Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lasing am Limit

15.02.2018

Wie klein, wie energieeffizient kann ein Laser sein? Die Suche nach dem ultimativen Nanolaser für die Informationstechnologie der Zukunft beschäftigt Forschergruppen weltweit.

Im Rahmen einer internationalen Kooperation ist es Prof. Dr. Stephan Reitzenstein vom Institut für Festkörperphysik an der TU Berlin und seinen Projektpartnern nicht nur gelungen, einen extrem kleinen und hocheffizienten Nanolaser zu bauen, sondern erstmalig auch dessen Lasereigenschaften über die quantenoptische Messung der Emissionsstatistik eindeutig nachzuweisen.


Der Begriff der Laserschwelle lässt sich gut anhand eines löchrigen Gefäßes verdeutlichen: Erst wenn die Pumpleistung so stark ist, dass die Verluste überkompensiert werden, kommt es zur Emission von Laserlicht. In dem sogenannten Nanolaser ist es unter anderem durch die extreme Reduzierung der Größe gelungen, die Verluste und damit auch die Laserschwelle deutlich herabzusetzen.

© Prof. Dr. Stephan Reitzenstein

„Energieeffizienz beschäftigt nicht nur die Hersteller von Elektroautos, sondern ist auch ein Thema in der sogenannten ‚On-Chip-Photonik‘, also Mikrochips auf denen die Datenübertragung und -verarbeitung mehr und mehr auf der Basis von Licht geschieht“, weiß Prof. Stephan Reitzenstein.

„Das Besondere an zukünftigen Nanolasern ist, dass diese am Übergang zur Quantenoptik, also in dem Bereich einzelner Lichtquanten, sogenannten Photonen, operieren.“ In der Praxis bedeutet dies: Es ist nicht nur besonders schwierig, solche Nanolaser herzustellen. Die spezielle Herausforderung liegt vor allem auch darin, die Laseremission überhaupt eindeutig nachzuweisen.

Laserlicht entsteht generell in einem sogenannten optischen Resonator, wenn einem sich darin befindenden Lasermedium ausreichend Energie zugeführt wird. Das Problem: Die zugeführte Energie, die sogenannte Pumpleistung, muss ein gewisses Limit – die Laserschwelle – überschreiten, damit das Lasermedium nicht nur Licht, sondern Laserlicht emittiert.

„Das liegt daran, dass zunächst ein Großteil der zugeführten Energie in Photonen umgewandelt wird, ohne dass diese in den beabsichtigten Laserstrahl einkoppeln. Bei gewöhnlichen Halbleiterlasern, wie man sie zum Beispiel in jedem CD- oder DVD-Player antrifft, wird tatsächlich nur jedes hunderttausendste Photon in den Laserstrahl eingekoppelt. Alle anderen Photonen gehen verloren. Erst wenn die Pumpstärke diese Verluste ausgleicht, kann Laserlicht entstehen“, so Prof. Reitzenstein, der das Phänomen gerne mit einem löchrigen Eimer vergleicht:

„Der löchrige Eimer symbolisiert den Resonator. Der Wasserschlauch, mit dem wir den Eimer befüllen, ist vergleichbar mit der Pumpquelle, welche den Resonator mit Photonen füllt. Ziel ist es, in dem Eimer einen gewissen Pegelstand zu erreichen, Sinnbild für die Laserschwelle. Durch viele kleine Löcher im Eimer fließt aber immer wieder Wasser ab – genauso wie immer wieder Photonen den Resonator verlassen, ohne in die Lasermode einzukoppeln. Daher muss die Wasserzufuhr ein gewisses Limit (Wassermenge/Zeit) überschreiten, damit der Wasserpegel überhaupt den benötigten Pegelstand (Laserschwelle) erreicht. Soll nun ein energieeffizienter Nanolaser mit niedriger Laserschwelle gebaut werden, muss der Resonator möglichst klein und dicht sein. Im Grenzfall eines ultimativen schwellenlosen Nanolasers gelingt es quasi, alle ‚Löcher zu stopfen‘, so dass jedes eingebrachte Photon in die Lasermode einkoppelt.“

Gelungen ist das jetzt durch eine extreme Verkleinerung des Resonators. Die Breite des hier untersuchten Nanolasers beträgt lediglich ca. 200 nm. Zum Vergleich: Der Durchmesser eines menschlichen Haares liegt bei etwa 60.000 nm (ein Nanometer [1 nm] = 1 Millionstel Millimeter). „Die hochpräzise Struktur des Resonators führt dazu, dass im Mittel mehr als 7 von 10 zugeführten Photonen (und nicht nur jedes Hunderttausendste wie bei einem normalen Laser) effektiv für den Laserbetrieb nutzbar sind. „Damit sind wir dem ultimativen schwellenlosen Laser bereits sehr nahe gekommen“, erläutert Stephan Reitzenstein.

Für die Charakterisierung der Nanolaser kamen hochempfindliche Detektoren und aufwändige Analysemethoden zum Einsatz: So wird mit einem quantenoptischen Experiment die Photonenstatistik des emittierten Lichts ermittelt, welche charakteristisch für die Laseremission ist. Nur durch diesen komplexen Aufbau gelang erstmals der eindeutige Beweis, dass es sich bei dem Licht aus dem Nanoresonator auch tatsächlich um Laserlicht handelt und dieser nicht lediglich als Leuchtdiode fungiert.

„Insbesondere demonstrieren wir, dass etablierte ‚Lasing-Kriterien’ für Nanolaser an Bedeutung verlieren und Laserlicht letztendlich nur quantenoptisch nachgewiesen werden kann“, erklärt Stefan T. Jagsch, der als Doktorand von Prof. Reitzenstein die experimentellen Arbeiten federführend durchgeführt hat.

Die Arbeiten entstanden im Rahmen eines von der DFG und dem Schweizerischen Nationalfonds (SNF) geförderten Drittmittelprojektes, in enger Kooperation mit führenden Gruppen im Feld von Halbleiterprozessierung (Prof. Nicolas Grandjean, École Polytechnique Fédérale de Lausanne), Nanolaser-Theorie (Dr. Christopher Gies und Prof. Frank Jahnke, Universität Bremen) und Charakterisierung von Nitrid-Halbleitern (Prof. Axel Hoffmann, TU Berlin). Sie wurden in der aktuellen Ausgabe der renommierten Open Access Fachzeitschrift Nature Communications publiziert.

Bildmaterial finden Sie hier: www.tu-berlin.de/?id=193081

*Publikation: S. T. Jagsch, N. Vico Triviño, F. Lohof, G. Callsen, S. Kalinowski, I. M. Rousseau, R. Barzel, J.-F. Carlin, F. Jahnke, R. Butté, C. Gies, A. Hoffmann, N. Grandjean, S. Reitzenstein, A quantum optical study of thresholdless lasing features in high-β nitride nanobeam cavities, Nat. Commun. 9, 564 (2018).
DOI:10.1038/s41467-018-02999-2

Weitere Informationen erteilt Ihnen gerne:

Prof. Dr. Stephan Reitzenstein
TU Berlin
Institut für Festkörperphysik
Fachgebiet Optoelektronik und Quantenbauelemente
Tel.: 030 314-79704
Email: stephan.reitzenstein@physik.tu-berlin.de

Weitere Informationen:

http://www.tu-berlin.de/?id=193081

Stefanie Terp | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics