Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserblitze für polarisierte Elektronen- und Positronenstrahlen

12.06.2019

Simulationsrechnungen zeigen neue Verfahren zur effizienten Polarisation: Physiker des Max-Planck-Instituts für Kernphysik in Heidelberg haben neuartige Methoden zur Erzeugung relativistischer spinpolarisierter Elektronen- und Positronenstrahlen vorgestellt. Anhand von Simulationsrechnungen fanden sie drei verschiedene Szenarien für effizienten Polarisationstransfer von intensiven Laserstrahlen auf Teilchenstrahlen mit einem Polarisationsgrad von bis zu 70%. Eine Schlüsselrolle spielt hier die spinabhängige Strahlungsrückwirkung.

Die Polarisation von Wellen beschreibt deren Schwingungsrichtung, für Licht als elektromagnetische Welle ist dies die Richtung des elektrischen Feldvektors. Bei Teilchenstrahlen spricht man von Polarisation, wenn die Teilchen einen inneren Drehimpuls, den sog. Spin besitzen, den man sich als mikroskopische Kreisel vorstellen kann. Die Polarisation beschreibt hier die Richtung der Drehachse.


Abb. 1: Schema zur Spintrennung eines relativistischen Elektronenstrahls mit einem elliptisch polarisierten Laserpuls.

Grafik: MPIK


Abb. 2: Schema zur polarisationserhaltenden Laserbeschleunigung von Elektronen (rot) aus einem polarisierten molekularen Gastarget (weiß/grün). Die Pfeile deuten die Spinrichtung an.

Grafik: MPIK

Die Wechselwirkung von Licht und Teilchen ist in vielen Fällen von der jeweiligen Polarisation abhängig. Aus der Chemie z. B. kennt man die Drehung der Polarisationsebene von Licht, das eine Zuckerlösung durchläuft; in der Kernphysik erweisen sich die Kräfte zwischen den Nukleonen in einem Atomkern als von deren Spin abhängig. Daher sind für Experimente intensive polarisierte Strahlen von hohem Interesse.

Für geladene Teilchen mit Spin, z. B. Elektronen, ist es aber sehr schwierig, die gewünschte Spinausrichtung zu präparieren. Zwar verhalten sich diese wie kleine Magnetnadeln und könnten mit Magnetfeldern hinsichtlich ihres Spins getrennt werden. Zugleich wirkt aber die sog. Lorentzkraft, welche an der Bewegung der Elektronen angreift.

Um beide Einflüsse gleichzeitig zu kontrollieren, müssen Ort und Geschwindigkeit sehr genau bekannt sein – und dem steht fundamental die Unschärferelation der Quantenphysik entgegen. Es wurden verschiedene Verfahren entwickelt, dieses Problem zu umgehen, indem z. B. schon bei der Erzeugung von Elektronenstrahlen eine Spinrichtung bevorzugt wird, oder indem relativistische Effekte in Speicherringen ausgenutzt werden. Diese sind aber nicht besonders effizient hinsichtlich des erreichbaren Polarisationsgrads oder der Ausbeute an polarisierten Teilchen.

Physiker der Theorieabteilung von Christoph Keitel am Heidelberger Max-Planck-Institut für Kernphysik und der Xi’an-Jiaotong-Universtät (China) um Jianxing Li haben nun eine neue Methode vorgeschlagen, mit der sich relativistische, unpolarisierte Elektronenstrahlen durch Beschuss mit intensiven polarisierten Laserpulsen in Teilstrahlen mit entgegengesetztem Spin trennen lassen [1].

Hierzu haben sie Monte-Carlo-Simulationsrechnungen durchgeführt, in welchem ein Paket relativistischer Elektronen einem polarisierten hochintensiven Laserblitz entgegenläuft. Es zeigt sich, dass für leicht elliptisch polarisiertes Licht der Elektronenstrahl in Richtung des kleinen Durchmessers der Polarisationsellipse (siehe Abb. 1) in zwei Komponenten mit jeweils entgegengesetztem Spin ±S (blau/rot) aufspaltet.

Zugrunde liegt dabei die so genannte Strahlungsrückwirkung. Die Elektronen werden im Laserfeld von dessen elektrischer und magnetischer Kraft hin- und hergetrieben und diese Bewegung führt wiederum zur Abstrahlung von Lichtquanten, die zudem von der Spinrichtung abhängt. Hierbei erfährt das Elektron einen kleinen Rückstoß, was seine Bewegungsrichtung ändert.

Für rein lineare (a) oder zirkulare Polarisation (b) des Lasers geschieht dies aber in gleicher Weise für alle möglichen Richtungen, welche die oszillierenden Felder annehmen können, so dass am Ende Elektronen einer bestimmten Spinrichtung eine Ablenkung sowohl nach links wie nach rechts erfahren. Für leicht elliptische Polarisation ist aber diese Symmetrie aufgehoben und ergibt den gewünschten Effekt der Spintrennung. In den Rechnungen ergab sich ein Polarisationsgrad von bis zu 70%.

In einer weiteren Studie haben die Heidelberger Physiker ein Verfahren zur Herstellung polarisierter Positronen (Antiteilchen des Elektrons) untersucht [2]. Hierbei wird den relativistischen Elektronen ein asymmetrisch linear polarisierter Laserpuls entgegen geschossen, dessen Feld in einer Richtung deutlich stärker ist. Dies lässt sich durch Überlagerung zweier Laserpulse verschiedener Farbe erreichen.

Durch Wechselwirkung der energiereichen Elektronen mit dem hochintensiven Laserfeld werden Elektron-Positron-Paare erzeugt, die in Richtung bzw. entgegen der magnetischen Komponente des Lasers polarisiert sind. Diese Paarerzeugung ist ein nichtlinearer Prozess, der bei schwächeren Feldern stark unterdrückt wird. Daher bewirkt die Asymmetrie des Laserpulses eine deutliche Polarisation der erzeugten Positronen von bis zu 60%. Dies genügt den Anforderungen für verschiedene Anwendungen in der Hochenergiephysik.

Schließlich wurde in einer dritten Arbeit der Heidelberger Theoriegruppe die Erzeugung hochintensiver polarisierter Elektronenstrahlen betrachtet [3]. Experimentell wurde kürzlich gezeigt, dass mit zirkular polarisierten Laserstrahlen aus Molekülen polarisierte Gastargets sehr hoher Dichte erzeugt werden können.

Beschießt man ein solches Target mit einem hochintensiven Laser, so bildet sich ein Plasma worin sich Störungen wellenförmig ausbreiten und quasi in deren „Kielwasser“ Elektronen auf hohe Energien beschleunigt werden („Kielwasser-Beschleunigung“, siehe Abb. 2). Ein Problem sind die dabei auftretenden Magnetfelder, welche die Spinrichtung ändern und so zu einer Depolarisation führen können. Exakt auf der Stahlachse verschwinden diese Magnetfelder.

Mittels „Particle-in-Cell“-Simulationen konnten die Heidelberger Theoretiker Bedingungen finden, unter welchen die beschleunigten Elektronen entlang der Strahlachse stark gebündelt werden. So könnten Ströme im Bereich von Kiloampere erzeugt und zugleich die Depolarisation auf ca. 10% begrenzt werden.

Wissenschaftliche Ansprechpartner:

Dr. Karen Z. Hatsagortsyan
MPI für Kernphysik
E-Mail: k.hatsagortsyan@mpi-hd.mpg.de
Tel.: +49 6221 516-160

Dr. Matteo Tamburini
MPI für Kernphysik
E-Mail: matteo.tamburini@mpi-hd.mpg.de
Tel.: +49 6221 516-163

Hon.-Prof. Dr. Christoph Keitel
MPI für Kernphysik
E-Mail: keitel@mpi-hd.mpg.de
Tel.: +49 6221 516-150

Originalpublikation:

[1] Ultrarelativistic Electron-Beam Polarization in Single-Shot Interaction with an Ultraintense Laser Pulse
Yan-Fei Li, Rashid Shaisultanov, Karen Z. Hatsagortsyan, Feng Wan, Christoph H. Keitel and Jian-Xing Li
Physical Review Letters 122, 154801 (2019)

[2] Polarized positron beams via intense two-color laser pulses
Yue-Yue Chen, Pei-Lun He, Rashid Shaisultanov, Karen Z. Hatsagortsyan and Christoph H. Keitel
arXiv:1904.04110

[3] Polarized Laser-WakeField-Accelerated Kiloampere Electron Beams
Meng Wen, Matteo Tamburini and Christoph H. Keitel
Physical Review Letters 122, 214801 (2019)

Weitere Informationen:

https://doi.org/10.1103/PhysRevLett.122.154801 Physical Review Letters 122, 154801 (2019)

https://arxiv.org/abs/1904.04110 arXiv:1904.04110

https://doi.org/10.1103/PhysRevLett.122.214801 Physical Review Letters 122, 214801 (2019)

https://www.mpi-hd.mpg.de/keitel/ Division Theoretical Quantum Dynamics and Quantum Electrodynamics (MPIK)

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung
21.02.2020 | Universität Paderborn

nachricht 10.000-mal schnellere Berechnungen möglich
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics