Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserbasiertes Röntgenbild im Eiltempo

18.04.2018

Garchinger Laserphysiker haben mit Hilfe einer laserbasierten Röntgentechnik erstmals eine Knochenprobe innerhalb weniger Minuten rekonstruiert. Dadurch rückt eine medizinische Anwendung der neuen Technologie näher.

Einen wichtigen Schritt zur medizinischen Anwendung einer neuen laserbasierten Röntgenquelle haben Forscher der Ludwig-Maximilians-Universität (LMU), des Max-Planck-Instituts für Quantenoptik (MPQ) und der TU München (TUM) zurückgelegt. Mit Hilfe der durch einen Laser erzeugten Röntgenstrahlung ist es den Physikern gelungen, eine vollständige, dreidimensionale Rekonstruktion der Feinstruktur einer Knochenprobe, eine Tomographie, innerhalb weniger Minuten durchzuführen. Bisher dauerten vergleichbare laserbasierte Messungen mehrere Stunden.


Die Weiterentwicklung des Hochleistungslasers ATLAS im Laboratory for Extreme Photonics der LMU ermöglichte die Erstellung einer dreidimensionalen Rekonstruktion der Feinstruktur einer Knochenprobe. (Foto: Thorsten Naeser)

Den Durchbruch ermöglichte die Weiterentwicklung des Hochleistungslasers ATLAS im neuen Laboratory for Extreme Photonics (LEX Photonics) der LMU auf dem Forschungscampus Garching. Erleichtert hat die Messungen zudem die Rekonstruktion der Probe aus den Rohdaten mittels speziell entwickelter Computerprogramme.

Röntgenuntersuchungen beim Arzt oder Sicherheitskontrollen am Flughafen benutzen seit über 100 Jahren Röntgenröhren um die durchleuchtende Strahlung zu erzeugen. In der Wissenschaft jedoch wird eine besondere Art von Röntgenstrahlung bevorzugt, die sogenannte Synchrotronstrahlung.

Sie ist um ein Vielfaches heller und ermöglicht es, deutlich detailliertere Strukturanalysen durchzuführen. Synchrotron-Lichtquellen sind jedoch nicht sehr verbreitet. Sie beruhen auf der Beschleunigung von Teilchen mittels elektrischer Felder. Dazu ist der Bau von sehr großen und immens teuren Teilchenbeschleunigern notwendig.

Um Patienten trotzdem die Vorteile von Synchrotronstrahlung zu bieten, erforschen die Physiker an der LMU, am MPQ und an der TUM auf Hochleistungslasern basierende Röntgenquellen. Dabei treffen extrem intensive Laserpulse auf Wasserstoffatome. Deren elektrische Felder entreißen den Atomen die Elektronen und beschleunigen sie bis fast auf Lichtgeschwindgeit.

Währenddessen sorgen die starken Plasmafelder dafür, dass die Elektronen entlang ihrer Beschleunigungsstrecke oszillieren und somit Strahlung emittieren. Das alles passiert auf wenigen Millimetern Weglänge. Dementsprechend sind laserbasierte Röntgenquellen bei vergleichbarer Qualität der Strahlung um ein Vielfaches kleiner und daher deutlich günstiger als konventionelle Synchrotrons.

In ersten Messungen am Max-Planck-Institut zeigten die Forscher 2015 bereits eine dreidimensionale Rekonstruktion eines Insekts. In den neuen Experimenten am Laboratory for Extreme Photonics verbesserten die Forscher um Prof. Stefan Karsch nun ihren experimentellen Aufbau und analysierten erstmals eine menschliche Knochenprobe.

Dank fortgeschrittener Computer-Rekonstruktionsverfahren des Teams von Prof. Franz Pfeiffer von der TUM konnten die Forscher zudem mit einem deutlich kleineren Rohdatensatz arbeiten. Hierdurch konnte eine vollständige Tomographie innerhalb von drei Minuten aufgenommen werden.

Die Arbeiten entstanden im Rahmen des Exzellenzclusters Munich-Centre for Advanced Photonics (MAP), und werden am neuen Center for Advanced Laser Applications in Garching weitergeführt. Dessen Lasersysteme sollen die Effizienz und Qualität der Röntgenquelle nochmals deutlich steigern und somit diese neue Art der Tomografie erstmals medizinisch anwendbar machen. Thorsten Naeser

Bildbeschreibung: Die Weiterentwicklung des Hochleistungslasers ATLAS im Laboratory for Extreme Photonics der LMU ermöglichte die Erstellung einer dreidimensionalen Rekonstruktion der Feinstruktur einer Knochenprobe. (Foto: Thorsten Naeser)

Originalveröffentlichungen:

A.Döpp, L. Hehn, J. Götzfried, J. Wenz, M. Gilljohann, H. Ding, S. Schindler, F. Pfeiffer, and S. Karsch
Quick X-ray microtomography using a laser-driven betatron source
Optica Vol. 5, Issue 2, pp. 199-203 (2018) doi.org/10.1364/OPTICA.5.000199

J.Götzfried, A.Döpp, M.Gilljohann, H.Ding, S.Schindler, J.Wenz, L.Hehn, F.Pfeiffer, S.Karsch
Research towards high-repetition rate laser-driven X-ray sources for imaging applications
Nuclear Instruments and Methods A (2018), doi.org/10.1016/j.nima.2018.02.110

Kontakt:

Dr. Andreas Döpp
Ludwig-Maximilians-Universität München
Lehrstuhl für Experimentalphysik-Laserphysik
85748 Garching b. München
Telefon: +49 (0)89 289 - 14170
E-Mail: a.doepp@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rasende Elektronen unter Kontrolle
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kometen als Wasserträger für Exoplaneten
15.11.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics