Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser-Trick späht durch undurchsichtiges Material

12.11.2012
Wissenschaftler orten Potenzial für Nanotechnologie und Medizin

Ein Forscherteam hat eine Methode entwickelt, um scharfe Bilder von winzigen Objekten zu machen, die hinter völlig undurchsichtigem Material verborgen sind.


Von undurchsichtig zum Bild: es klappt wirklich (Foto: utwente.nl)

Wie die Gruppe in der Zeitschrift Nature beschreibt, hat sie dazu das verdeckende Material mit einem Laser in verschiedenen Winkeln abgetastet und dabei ein Fluoreszenzsignal gemessen, das Rückschlüsse auf das versteckte Objekt erlaubt. "Die gemessene Lichtintensität kann zwar nicht genutzt werden, um direkt ein Bild des Objekts zu erstellen - die nötige Information ist jedoch da, aber in verschlüsselter Form", erklärt Teamleiter Allard Mosk, Physikprofessor an der Universität Twente.

Durchblick trotz Hindernissen

Eben diese verschlüsselte Information konnte das Team mithilfe eines Computerprogramms herausfiltern, das zunächst einfach rät und sich dann schrittweise der richtigen Bildrekonstruktion annähert. Nun wollen die Forscher den Ansatz zu einer neuen Art der Mikroskopie weiterentwickeln, die Anwendungspotenzial in der Nanoelektronik und auch in der Medizin haben könnte.

Dass Materialien wie Papier oder die Haut undurchsichtig sind, liegt daran, dass Licht komplett gestreut wird - ein verdecktes Objekt ist also normalerweise nicht zu sehen. Doch in einem Experiment hat das Team den griechischen Buchstaben Pi in mikroskopischer Größe mit fluoreszierender Tinte geschrieben. Dieses Testobjekt haben sie dann hinter einer völlig undurchsichtigen, stark streuenden Glasplatte versteckt. Diese Platte hat das Team dann aus verschiedenen Winkeln immer an der gleichen Stelle per Laser beleuchtet, worauf sie ein diffuses Fluoreszenzleuchten messen konnten - aus dem das Programm erfolgreich das Bild rekonstruiert hat.

Pi nur 50 Mikrometer groß

Das versteckte fluoreszierende Pi war nur 50 Mikrometer groß, also etwa so groß wie eine Zelle. Dementsprechend sind die Forscher der Ansicht, dass die Arbeit einen Zugang zu Mikroskopie in stark streuenden Umgebungen eröffnen kann. "Das wird sehr nützlich für die Nanotechnologie. Wir möchten Strukturen ans Licht bringen, die in komplexen Umgebungen wie Computerchips versteckt sind", sagt Mosk. Langfristig hofft sein Team auch darauf, mit dem Ansatz unter die menschliche Haut sehen zu können. Im Moment sei das dem Physiker zufolge aber noch nicht möglich, da die Methode zu langsam ist.

Thomas Pichler | pressetext.redaktion
Weitere Informationen:
http://www.utwente.nl

Weitere Berichte zu: Laser-Trick Mikrometer Mikroskopie Nanotechnologie Winkeln laser system

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode zur Vermessung nano-strukturierter Lichtfelder
23.09.2019 | Westfälische Wilhelms-Universität Münster

nachricht TU Dortmund erstellt hochgenaues 3D-Modell vom Rover-Landeplatz auf dem Mars
18.09.2019 | Technische Universität Dortmund

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte internationale Konferenz zur Erforschung von Gebärdensprachen an der Universität Hamburg

23.09.2019 | Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Pheno-Inspect“ beschleunigt die Pflanzenzucht

23.09.2019 | Agrar- Forstwissenschaften

Größte internationale Konferenz zur Erforschung von Gebärdensprachen an der Universität Hamburg

23.09.2019 | Veranstaltungsnachrichten

Selbstheilungsprozessen auf der Spur: Bayreuther Biochemiker erforschen außergewöhnliche Regenerationsfähigkeit

23.09.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics