Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Large Hadron Collider - First Step In An Area Unknown To Mankind

14.11.2008
In September 2008, the "dreamlike" LHC (Large Hadron Collider) was finally started after a 14-year construction process directed by high energy physicists. Like a science fiction fantasy, researchers re-created a state of the universe 0.000000000001 of a second after the universe was born.
Ichiro Oba, Professor, Faculty of Science and Engineering
Kouhei Yorita, Associate Professor, Faculty of Science and Engineering
In September 2008, the "dreamlike" LHC (Large Hadron Collider) was finally started after a 14-year construction process directed by high energy physicists. Protons accelerating to 99.9999991% of the speed of light collided in a 27-kilometer circumference tunnel built 100 meters below the surface at CERN (European Organization for Nuclear Research), in the suburbs of Geneva on the border of Switzerland and France. Like an SF fantasy, researchers have re-created a state of the universe 0.000000000001 of a second after the universe was born.

What can we learn from the LHC?

To answer this question, we first must ask ourselves "What is it we don't yet know?" Elementary particle physics studies how to find the root of matter. This understanding is directly linked to the answer to the question of how the university was created. On the surface, there may be the impression that there is no problem that cannot be solved by the Standard Model. In actuality, however, it is merely an effective theory in which the Standard Model has endured through rigorous experimental verifications and in which the behavior of elementary particles have been clearly described. Unfortunately, we are not yet able to clearly answer the simple question, "When and how was the particle mass created?"

To answer to this question, the Standard Model framework calls for the existence of a yet unknown particle called the Higgs particle. Finding this particle is the primary goal of the LHC and is the first step in throwing light on the ultimate answer. If the Standard Model is correct in this energy range, the particle definitely can be found by the LHC. The LHC also has a more profound and intriguing story. For example, it is expected that the supersymmetry particle (SUSY) will be found and new and unprecedented phenomenon related in the extra-dimension will appear. The supersymmetry particle is a candidate for dark matter, which is said to occupy 23% of the universe. The world is watching the LHC.

Going to experimental verification from theory debate

This year's Nobel Prize in Physics went to three Japanese theoretical physicists: Yoichiro Nambu, Hidetoshi Maskawa and Makoto Kobayashi. This is great honor for Japan. Not only has their work contributed to establish a basis for current elementary particle physics but it has also played an important role in defining the direction in which these elementary particle "experiments" go. They have also been rigorously researching ways to prove experimental results. Their work clearly shows that theories and experiments stimulate each other, providing mankind with new insights through a long series of tremendous efforts. For elementary particle physics, however, theories precede experimental verification; countless heated discussions have been held and the experiments on verifying them have not been impossible to be performed. One reason is that the energy that can be generated by an experiment is limited. This is where the LHC comes onstage. As the result of efforts by thousands of engineers and experimental physicists, and international cooperative study, the totally unknown energy range of 14TeV can be experimentally verified. Following that understanding, LHC can be a prologue for elementary particle physics which, in previous times, worked experimentally and theoretically at the same time.

Current and future state

For the first time ever on September 10, protons were successfully circulated in the LHC ring. A helium leakage occurred that was caused by an electrical system failure and the experiment was delayed for two months. This type of problem is not unusual for such a large-scale experiment and is not serious concern. The fact that it was successful to circulating protons in even one direction is proof of the excellence of the technology and the tremendous effort of the engineers and physicists working on the accelerator. There is no doubt that the energy level will reach 14TeV next spring, opening up a new era for particle physics. Frankly speaking, nobody knows what's going to be discovered by the LHC. Regardless of whether there is a new discovery or, nothing is found in our expectations. it is assured that new mysteries will be uncovered, changing the modality of elementary particle physics and influencing not only elementary physics but also adjacent scientific fields. We are on the eve of a revolution.

The Japanese group has made large contributions to the project. Currently, 15 institutions and about 100 researchers from Japan are deeply involved in the project. These institutions include the High Energy Accelerator Research Organization (KEK) and the International Center for Elementary Particle Physics (the University of Tokyo). The contribution of Japan, not just to the LHC but also the ATLAS experimental group (an international research group for the detector installed at the collision point), is tremendous. It is very encouraging to know that Japanese researchers and engineers are assuming leadership not only in theoretical areas but also in experimental areas. The experiment group from Waseda University is also likely to become involved as a member of such a large-scale international experimental project. We must first prove to ourselves that we can contribute to the international community and continued to move ahead by probing intellectual curiosity to search for the truth. The LHC experiment has great possibilities in that it allows us to discover the unexpected and profound physical laws that govern the universe. New discoveries create new mysteries. This profound world is as endless as we human beings with our curiosity and ceaseless efforts.

Ichiro Oba, Professor, Faculty of Science and Engineering
Kouhei Yorita, Assistant Professor, Faculty of Science and Engineering

waseda university | ResearchSEA
Further information:
http://public.web.cern.ch/Public/
http://atlas.ch/
http://atlas.kek.jp/

Further reports about: LHC Large Hadron Collider Physic Science Universe particle physics studies

More articles from Physics and Astronomy:

nachricht Immortal quantum particles: the cycle of decay and rebirth
14.06.2019 | Technische Universität München

nachricht Small currents for big gains in spintronics
13.06.2019 | University of Tokyo

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics