Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lange Speicherung photonischer Quantenbits für globale Teleportation

13.12.2017

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite Teleportation von Quanteninformation ermöglichen.


Künstlerische Darstellung der globalen Teleportation von Quantenbits.

Grafik: Christoph Hohmann, Nanosystems Initiative Munich (NIM)

Bei der Erforschung von Quantenspeichern zur Realisierung globaler Quantennetzwerke ist Forschern der Abteilung Quantendynamik von Prof. Gerhard Rempe am Max-Planck-Institut für Quantenoptik ein wesentlicher Durchbruch gelungen: auf einem einzelnen, in einem optischen Resonator gefangenen Atom konnten sie ein photonisches Quantenbit über ein Zeitraum von mehr als 100 Millisekunden speichern (Nature Photonics, 11. Dezember 2017). Speicherzeiten dieser Größenordnung sind Voraussetzung für den Aufbau eines Quantennetzwerkes, in dem die Quanteninformation durch Teleportation auf die diversen Netzknoten verteilt wird. „Die von uns erzielten Kohärenzzeiten bedeuten eine Verbesserung um zwei Größenordnungen bezogen auf den gegenwärtigen Stand der Technik“, betont Prof. Rempe.

Licht ist ein idealer Träger für Quanteninformationen, doch beim direkten Transport über große Distanzen gehen wertvolle Quantenbits verloren. Einen möglichen Ausweg bietet hier die Teleportation des Quantenbits zwischen den Endknoten eines Quantennetzwerkes. Hierfür wird zunächst „Verschränkung“ zwischen den Knoten erzeugt; mit Hilfe dieser „spukhafte Fernwechselwirkung“ wird das Quantenbit bei einer geeigneten Messung auf dem Senderknoten „instantan“, d.h., mit sofortiger Wirkung, zum Empfängerknoten übertragen. Dort kann es allerdings „verdreht“ ankommen, so dass es erst entsprechend zurückgedreht werden muss. Die dafür benötigte Information muss vom Senderknoten zum Empfänger auf klassischem Weg geschickt werden. Es dauert also eine gewisse Zeit, bis sie den Empfänger erreicht hat, und solange muss das Quantenbit dort gespeichert werden. Für zwei maximal weit auseinanderliegende Netzknoten auf der Erde entspricht das einer Zeitspanne von mindestens 66 Millisekunden.

Bereits vor ein paar Jahren hat die Gruppe von Prof. Rempe eine Technik entwickelt und erfolgreich erprobt, die in einem Photon kodierte Quanteninformation auf einem einzelnen Atom zu speichern. Dazu wird ein Rubidiumatom im Zentrum eines von zwei Spiegeln höchster Güte (Abstand 500 Mikrometer) gebildeten optischen Resonators plaziert und von zwei stehenden Lichtwellen – parallel und senkrecht zur Resonatorachse – festgehalten. In diesen Resonator schickt man einzelne Lichtquanten, auf denen Quanteninformation in Form einer kohärenten Überlagerung von rechts- und linksdrehendem Polarisationszustand kodiert ist. Durch die zig-tausendfache Reflexion eines Photons im Resonator erhöht sich dessen Lichtfeld so stark, dass es mit dem Atom effektiv in Wechselwirkung treten kann.

Zeitgleich mit der Ankunft des Photons im Resonator wird ein Laserkontrollpuls geschaltet, der die Übertragung und Speicherung der photonischen Quanteninformation in Gang setzt. Dabei werden die beiden Polarisationszustände des Photons auf zwei bestimmte Energieniveaus im Atom abgebildet. Die Frage ist nun, wie lange die kohärente Superposition der atomaren Zustände erhalten bleibt. Dies gelang in den früheren Experimenten nur für die Dauer von einigen hundert Mikrosekunden.

„Unser generelles Problem bei der Speicherung von Quanteninformation ist die sogenannte Dephasierung“, erklärt Stefan Langenfeld, Doktorand am Experiment. „Wesentlich für Quanteninformation ist die Phasenbeziehung der Wellenfunktionen der beiden Energiezustände, die kohärent überlagert sind. In der Praxis geht die Phasenbeziehung der atomaren Superposition im Laufe der Zeit verloren, vor allem aufgrund von Wechselwirkung mit magnetischen Feldfluktuationen.“

Deshalb ergreifen die Wissenschaftler in ihrem neuen Experiment eine zusätzliche Maßnahme: kaum, dass die Übertragung der Information von Lichtquant auf Atom stattgefunden hat, wird mit einem weiteren Laserstrahl im Atom ein Raman-Übergang induziert, der die Population eines der Energieniveaus kohärent auf ein anderes überträgt. Die resultierende Konfiguration ist etwa 500mal unempfindlicher gegenüber Magnetfeldfluktuationen.

Zum Auslesen des Quantenbits wird der Raman-Übergang rückwärts durchlaufen, und das photonische Quantenbit wird in Bezug auf seine Eigenschaften genauestens untersucht. Die Messungen ergeben eine Übereinstimmung von ca. 90 % mit dem ursprünglichen Photon, und das für Speicherzeiten von 10 Millisekunden. Allein durch die vorübergehende Verschiebung der atomaren Population gelingt also eine mehr als 10fache Steigerung der Kohärenzzeit. Einen weiteren Faktor 10 schaffen die Wissenschaftler mit der sogenannten „Spin-Echo“-Technik. Dabei wird nach genau der Hälfte der Speicherzeit die Population der beiden atomaren Energieniveaus ausgetauscht. „Wir können damit die Quantennatur des gespeicherten Bits über einen Zeitspanne von mehr als 100 Millisekunden lang erhalten“, betont Matthias Körber, Doktorand am Experiment. „Die Vision eines weltumspannenden Quantennetzwerkes wird die abhörsichere und verlustfreie Übertragung von Quanteninformationen ermöglichen. Auch wenn bis zu ihrer tatsächlichen Realisierung noch viel Forschungsarbeit geleistet werden muss, sind langlebige Quantenspeicher doch eine der Kerntechnologien, und deren aktueller Fortschritt bringt uns hoffentlich dem Ziel ein signifikantes Stück näher.“ Olivia Meyer-Streng

Originalveröffentlichung:

M. Körber, O. Morin, S. Langenfeld, A. Neuzner, S. Ritter, G. Rempe
Decoherence-protected memory for a single-photon qubit
Nature Photonics, Advance Online Publication, 11 December 2017, DOI: 10.1038/s41566-017-0050-y

Kontakt:

Prof. Dr. Gerhard Rempe
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 701
E-Mail: gerhard.rempe@mpq.mpg.de

Matthias Körber
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 729
E-Mail: matthias.koerber@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics