Läuten Multiferroika bald neues Zeitalter in der Elektronik ein?

Denn in Multiferroika treten Magnetismus (die Ausrichtung mikroskopischer Magnete) und Ferroelektrizität (die Ausrichtung elektrischer Dipole) simultan auf. In ihrem soeben in Nature Materials erschienenen Beitrag berichten die Arbeitsgruppen von Prof. Dr. Jens Müller und Prof. Dr. Michael Lang (Goethe-Universität Frankfurt) sowie PD Dr. Peter Lunkenheimer und Prof. Dr. Alois Loidl (Universität Augsburg) von einer überraschenden Entdeckung.

Es ist ihnen gelungen, Multiferroizität erstmals in einem Ladungstransfersalz – in einem organischen (kohlenstoffbasierten) Festkörper also – nachzuweisen und damit eine neue Klasse multiferroischer Materialien zu erschließen. Diese Materialien kombinieren verschiedene Arten „ferroischer“ Ordnung. Überraschend ist diese Entdeckung, weil Ladungstransfersalze an sich schon seit langem bekannt und in der Grundlagenforschung Gegenstand intensiver Untersuchungen sind.
Diese Materialien weisen eine erstaunliche Fülle interessanter physikalischer Phänomene auf, so etwa Supraleitung, magnetisch- oder ladungsgeordnete Zustände und Metall-Isolator-Übergänge. Solche Phänomene werden in Frankfurt und Augsburg im Rahmen der DFG-Sonderforschungsbereiche/TRR „Condensed Matter Systems with Variable Many-Body Interactions“ (Sprecher: Prof. Michael Lang) und „From Electronic Correlations to Functionality“ untersucht.

Was die Frankfurter und Augsburger Physiker entdeckt haben und nun in dem Beitrag unter dem Titel „Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism“

veröffentlicht haben, ist insofern spektakulär, als in dem untersuchten Material ein neuer Mechanismus auftritt, bei dem die ferroelektrische Ordnung die magnetische überhaupt erst möglich macht: Durch eine zunächst auftretende Ordnung von Elektronen werden konkurrierende magnetische Wechselwirkungen unterdrückt, die zuvor das spontane Ordnen der magnetischen Momente behindert haben. Erst durch diese Unterdrückung wird die antiferromagnetische, also antiparallele Ausrichtung dieser Momente ermöglicht.

Inzwischen arbeiten die Frankfurter und Augsburger Physiker bereits daran, diese neuartigen multiferroischen Eigenschaften in einem organischen Material im Detail zu verstehen und eine mögliche Wechselwirkung zwischen elektrischer und magnetischer Ordnung nachzuweisen. Eine solche Wechselwirkung wäre für mögliche Anwendungen insbesondere in der elektronischen Schaltungs-, Sensor- und Speichertechnologie von hoher Relevanz.

Originalbeitrag:
Peter Lunkenheimer, Jens Müller, Stephan Krohns, Florian Schrettle, Alois Loidl, Benedikt Hartmann, Robert Rommel, Mariano de Souza, Chisa Hotta, John A. Schlueter, Michael Lang: “Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism”. http://dx.doi.org/10.1038/NMAT3400

Weitere Informationen: Prof. Dr. Jens Müller, Tel. (069) 798-47274, j.mueller@physik.uni-frankfurt.de Prof. Dr. Michael Lang, Tel. (069) 798-47241, michael.lang@physik.uni-frankfurt.de

Media Contact

Ulrike Jaspers idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer