Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit künstlicher Intelligenz zum Ursprung des Universums

24.09.2012
Dem Astrophysiker Francisco Kitaura vom Leibniz-Institut für Astrophysik Potsdam (AIP) ist es gelungen, den kosmischen Ursprung für die Verteilung von Galaxien auf großen Skalen schärfer denn je einzugrenzen.
Kitauras Methode könnte sich als bahnbrechend für die Erforschung der Entwicklung des Universums auf großen Skalen und das Verständnis der Galaxienverteilung im Raum erweisen.

Um die Entwicklung des Universums nachzuvollziehen, durchmustern Großteleskope regelmäßig und kontinuierlich den Nachthimmel. Was sie finden, sind Abertausende von Galaxien, die sich in bestimmte Strukturen anordnen und das sogenannte kosmische Netz bilden. Astronomen gehen jedoch davon aus, dass die leuchtenden Objekte, die sie im Nachthimmel beobachten, nur ein Fünftel der Materie im Universum ausmachen.
Der größte Teil der Materie strahlt nicht und wird daher als Dunkle Materie bezeichnet. Zusätzlich gibt es eine dominierende Dunkle-Energie-Komponente, – etwa 70 Prozent der gesamten Energie im Universum - die für die beschleunigte Expansion des Universums verantwortlich ist. Dieses Modell nennen Astrophysiker das LCDM-Modell und versuchen es immer aufs Neue zu überprüfen, da weder die Dunkle Materie noch die Dunkle Energie direkt beobachtet worden sind.

Die Messung der kosmischen Mikrowellen-Hintergrundstrahlung, die durch den Urknall ausgelöst wurde, ermöglicht den Astronomen die Bewegung der Lokalen Gruppe von Galaxien - zu der unsere Galaxie gehört - zu messen. Astrophysiker versuchen, die Bewegung der Lokalen Gruppe durch die Anziehungskraft der umliegenden Dunklen Materie zu erklären, können dabei allerdings nur auf ihre Beobachtungen der sichtbaren Galaxienverteilung zurückgreifen.

Supergalactic plot of the Cosmic Web Structure: A slice through the three dimensional Local Universe with side 370 Million light years is shown. The red circles represent observed galaxies from the 2MRS survey. The blue circles are random galaxies filled in the so-called zone of avoidance. The light and dark colour code stands for the density field reconstruction using the KIGEN artificial intelligence code. (AIP)

Die grundlegende Schwierigkeit dieses Projekts schildert der Potsdamer Wissenschaftler wie folgt: „Aufschluss über die Verteilung der Dunklen Materie und deren Dynamik anhand der Galaxienverteilung zu gewinnen gleicht dem Versuch, aus der Satellitenaufnahme der Erde bei Nacht, auf der man allein die Lichter der stark besiedelten Regionen sieht, ein geographisch genaues Abbild unseres Planeten zu formen. Und das nicht nur zum heutigen Zeitpunkt sondern auch zu einem vergangenen, als die Kontinente noch zusammenhingen, um gleichzeitig die Kontinentalverschiebung zu bestimmen.“

Kitaura entwickelte einen Algorithmus der sich künstliche Intelligenz zu Nutzen macht. Die Methode spielt iterativ generierte Anfangsfluktuationen und die daraus resultierende Strukturentstehung in einem selbstlernenden Prozess durch. Die Ergebnisse werden dann mit der tatsächlichen Galaxienverteilung im Universum abgeglichen. So können durch das Verfahren auch die Bewegungsrichtung und Geschwindigkeitsfelder von Galaxien bestimmt werden.

„Unsere genauen Rechnungen zeigen, dass die Bewegungsrichtung und 80 Prozent des Geschwindigkeitsbetrags der Lokalen Gruppe durch die Materieverteilung innerhalb eines Radius von etwa 370 Millionen Lichtjahren in Übereinstimmung mit dem LCDM Modell erklärt werden können.“ sagt Kitaura, der die Studie geleitet hat. „Um die restlichen 20 Prozent zu erklären, müssen wir noch berücksichtigen, dass die Dynamik theoretisch von kosmischen Strukturen aus etwa 460 Millionen Lichtjahren Entfernung beeinflusst werden kann. Die Zeit, die man bräuchte, um diese Distanzen in Lichtgeschwindigkeit zu überbrücken, entspricht der Zeit, die seit der Ära der Dinosaurier bis ins Jahr 2012 vergangen ist – allerdings mehr als zweimal.“

Kitauras Verfahren ist die erste in sich konsistente Methode einer parallelen Rekonstruktion der Anfangsdichtefluktuationen des heutigen kosmischen Netzes und der Geschwindigkeitsfelder, die kompatibel mit der dreidimensionalen Verteilung der Galaxien in unserem lokalen Universum ist. Die Methode findet bereits jetzt innerhalb eines internationalen Teams weitere Anwendung, um mit bisher unerreichter Genauigkeit die Entwicklung des lokalen Universums auf Supercomputern zu simulieren und somit Rückschlüsse auf die Entstehung unserer Umgebung und unserer eigenen Galaxie zu ziehen.

Francisco Kitaura forscht seit Juli 2011 als Karl-Schwarzschild-Fellow am Leibniz-Institut für Astrophysik Potsdam. Seine Forschungsinteressen umfassen die Strukturentstehung im Universum und deren statistische Charakterisierung. Die Publikation ist online auf http://arxiv.org/abs/1205.5560 veröffentlicht und erscheint in Kürze in den Monthly Notices of the Royal Astronomical Society (MNRAS).
Wissenschaftlicher Kontakt
Dr. Francisco-Shu Kitaura, 0331-7499 447, fkitaura@aip.de
Forschung, Bilder, Movies: http://www.aip.de/Members/fkitaura
Pressekontakt
Kerstin Mork, 0331-7499 469, presse@aip.de

Kerstin Mork | idw
Weitere Informationen:
http://arxiv.org/abs/1205.5560
http://www.aip.de/Members/fkitaura

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenimaging: Unsichtbares sichtbar machen
02.04.2020 | Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF

nachricht Internationales Physiker-Team berechnet Effekt virtueller quarks in der Streuung von zwei Lichtquanten
02.04.2020 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Den Regen für Hydrovoltaik nutzen

Wassertropfen, die auf Oberflächen fallen oder über sie gleiten, können Spuren elektrischer Ladung hinterlassen, so dass sich die Tropfen selbst aufladen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben dieses Phänomen, das uns auch in unserem Alltag begleitet, nun detailliert untersucht. Sie entwickelten eine Methode zur Quantifizierung der Ladungserzeugung und entwickelten zusätzlich ein theoretisches Modell zum besseren Verständnis. Nach Ansicht der Wissenschaftler könnte der beobachtete Effekt eine Möglichkeit zur Energieerzeugung und ein wichtiger Baustein zum Verständnis der Reibungselektrizität sein.

Wassertropfen, die über nicht leitende Oberflächen gleiten, sind überall in unserem Leben zu finden: Vom Tropfen einer Kaffeemaschine über eine Dusche bis hin...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: Quantenimaging: Unsichtbares sichtbar machen

Verschränkte Lichtteilchen lassen sich nutzen, um Bildgebungs- und Messverfahren zu verbessern. Ein Forscherteam am Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena hat eine Quantenimaging-Lösung entwickelt, die in extremen Spektralbereichen und mit weniger Licht genaueste Einblicke in Gewebeproben ermöglichen kann.

Optische Analyseverfahren wie Mikroskopie und Spektroskopie sind in sichtbaren Wellenlängenbereichen schon äußerst effizient. Doch im Infrarot- oder...

Im Focus: Sensationsfund: Spuren eines Regenwaldes in der Westantarktis

90 Millionen Jahre alter Waldboden belegt unerwartet warmes Südpol-Klima in der Kreidezeit

Ein internationales Forscherteam unter Leitung von Geowissenschaftlern des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI)...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste SARS-CoV-2-Genome aus Österreich veröffentlicht

03.04.2020 | Biowissenschaften Chemie

Projekt »Lade-PV« gestartet: Fahrzeugintegrierte PV für Elektro-Nutzfahrzeuge

03.04.2020 | Energie und Elektrotechnik

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics