Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit künstlicher Intelligenz zum Ursprung des Universums

24.09.2012
Dem Astrophysiker Francisco Kitaura vom Leibniz-Institut für Astrophysik Potsdam (AIP) ist es gelungen, den kosmischen Ursprung für die Verteilung von Galaxien auf großen Skalen schärfer denn je einzugrenzen.
Kitauras Methode könnte sich als bahnbrechend für die Erforschung der Entwicklung des Universums auf großen Skalen und das Verständnis der Galaxienverteilung im Raum erweisen.

Um die Entwicklung des Universums nachzuvollziehen, durchmustern Großteleskope regelmäßig und kontinuierlich den Nachthimmel. Was sie finden, sind Abertausende von Galaxien, die sich in bestimmte Strukturen anordnen und das sogenannte kosmische Netz bilden. Astronomen gehen jedoch davon aus, dass die leuchtenden Objekte, die sie im Nachthimmel beobachten, nur ein Fünftel der Materie im Universum ausmachen.
Der größte Teil der Materie strahlt nicht und wird daher als Dunkle Materie bezeichnet. Zusätzlich gibt es eine dominierende Dunkle-Energie-Komponente, – etwa 70 Prozent der gesamten Energie im Universum - die für die beschleunigte Expansion des Universums verantwortlich ist. Dieses Modell nennen Astrophysiker das LCDM-Modell und versuchen es immer aufs Neue zu überprüfen, da weder die Dunkle Materie noch die Dunkle Energie direkt beobachtet worden sind.

Die Messung der kosmischen Mikrowellen-Hintergrundstrahlung, die durch den Urknall ausgelöst wurde, ermöglicht den Astronomen die Bewegung der Lokalen Gruppe von Galaxien - zu der unsere Galaxie gehört - zu messen. Astrophysiker versuchen, die Bewegung der Lokalen Gruppe durch die Anziehungskraft der umliegenden Dunklen Materie zu erklären, können dabei allerdings nur auf ihre Beobachtungen der sichtbaren Galaxienverteilung zurückgreifen.

Supergalactic plot of the Cosmic Web Structure: A slice through the three dimensional Local Universe with side 370 Million light years is shown. The red circles represent observed galaxies from the 2MRS survey. The blue circles are random galaxies filled in the so-called zone of avoidance. The light and dark colour code stands for the density field reconstruction using the KIGEN artificial intelligence code. (AIP)

Die grundlegende Schwierigkeit dieses Projekts schildert der Potsdamer Wissenschaftler wie folgt: „Aufschluss über die Verteilung der Dunklen Materie und deren Dynamik anhand der Galaxienverteilung zu gewinnen gleicht dem Versuch, aus der Satellitenaufnahme der Erde bei Nacht, auf der man allein die Lichter der stark besiedelten Regionen sieht, ein geographisch genaues Abbild unseres Planeten zu formen. Und das nicht nur zum heutigen Zeitpunkt sondern auch zu einem vergangenen, als die Kontinente noch zusammenhingen, um gleichzeitig die Kontinentalverschiebung zu bestimmen.“

Kitaura entwickelte einen Algorithmus der sich künstliche Intelligenz zu Nutzen macht. Die Methode spielt iterativ generierte Anfangsfluktuationen und die daraus resultierende Strukturentstehung in einem selbstlernenden Prozess durch. Die Ergebnisse werden dann mit der tatsächlichen Galaxienverteilung im Universum abgeglichen. So können durch das Verfahren auch die Bewegungsrichtung und Geschwindigkeitsfelder von Galaxien bestimmt werden.

„Unsere genauen Rechnungen zeigen, dass die Bewegungsrichtung und 80 Prozent des Geschwindigkeitsbetrags der Lokalen Gruppe durch die Materieverteilung innerhalb eines Radius von etwa 370 Millionen Lichtjahren in Übereinstimmung mit dem LCDM Modell erklärt werden können.“ sagt Kitaura, der die Studie geleitet hat. „Um die restlichen 20 Prozent zu erklären, müssen wir noch berücksichtigen, dass die Dynamik theoretisch von kosmischen Strukturen aus etwa 460 Millionen Lichtjahren Entfernung beeinflusst werden kann. Die Zeit, die man bräuchte, um diese Distanzen in Lichtgeschwindigkeit zu überbrücken, entspricht der Zeit, die seit der Ära der Dinosaurier bis ins Jahr 2012 vergangen ist – allerdings mehr als zweimal.“

Kitauras Verfahren ist die erste in sich konsistente Methode einer parallelen Rekonstruktion der Anfangsdichtefluktuationen des heutigen kosmischen Netzes und der Geschwindigkeitsfelder, die kompatibel mit der dreidimensionalen Verteilung der Galaxien in unserem lokalen Universum ist. Die Methode findet bereits jetzt innerhalb eines internationalen Teams weitere Anwendung, um mit bisher unerreichter Genauigkeit die Entwicklung des lokalen Universums auf Supercomputern zu simulieren und somit Rückschlüsse auf die Entstehung unserer Umgebung und unserer eigenen Galaxie zu ziehen.

Francisco Kitaura forscht seit Juli 2011 als Karl-Schwarzschild-Fellow am Leibniz-Institut für Astrophysik Potsdam. Seine Forschungsinteressen umfassen die Strukturentstehung im Universum und deren statistische Charakterisierung. Die Publikation ist online auf http://arxiv.org/abs/1205.5560 veröffentlicht und erscheint in Kürze in den Monthly Notices of the Royal Astronomical Society (MNRAS).
Wissenschaftlicher Kontakt
Dr. Francisco-Shu Kitaura, 0331-7499 447, fkitaura@aip.de
Forschung, Bilder, Movies: http://www.aip.de/Members/fkitaura
Pressekontakt
Kerstin Mork, 0331-7499 469, presse@aip.de

Kerstin Mork | idw
Weitere Informationen:
http://arxiv.org/abs/1205.5560
http://www.aip.de/Members/fkitaura

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics