Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Kraftwerk im Krebsnebel

28.03.2012
Magic-Teleskope messen die bisher höchsten Energien in der Gammastrahlung eines Pulsars und stellen die Theorie in Frage

Der Pulsar im Zentrum des berühmten Krebsnebels ist ein wahres Energiebündel. Das haben jetzt die beiden beiden Magic-Teleskope auf der kanarischen Insel La Palma bestätigt.


Kosmischer Leuchtturm: Der Krebspulsar stößt im Bereich der Gammastrahlen Pulse mit bis zu 400 Giga-Elektronenvolt (GeV) aus – mindestens 50-mal mehr als bisher von Theoretikern erwartet. Die Animation zeigt die gepulste Strahlung, gemessen mit den beiden Magic-Teleskopen. © S. Klepser, MAGIC Collaboration


In unterschiedlichem Licht betrachtet: Die Abbildung zeigt den Krebsnebel im optischen (links) und im Röntgenteleskop (Mitte) sowie eine grafische Darstellung des Pulsar-Magnetfelds (rechts). Die Lichtkurve (unten) gibt den periodischen Ausstoß von Gammastrahlen in einem Abstand von 0,0337 Sekunden wieder, das heißt, zwei Pulse pro Umdrehung. © NASA, ESA, J. Hester, A. Loll, CXC, SAO, F. Seward et al., MAGIC Collaboration

Sie beobachteten den Pulsar im bisher schwer zugänglichen Bereich der Gammastrahlen von 25 bis 400 Giga-Elektronenvolt (GeV) und fanden, dass er tatsächlich Pulse mit der maximal messbaren Energie bis zu 400 GeV aussendet – mindestens 50-mal mehr als von Theoretikern erwartet. Das aber bringt die Astrophysiker in Erklärungsnot: „Dahinter muss ein Prozess stecken, den wir noch nicht kennen“, sagt Razmik Mirzoyan, Projektleiter am Max-Planck-Institut für Physik.

Der Neutronenstern im Krebsnebel ist einer der bekanntesten Pulsare. Er dreht sich 30-mal pro Sekunde um die eigene Achse und besitzt ein Magnetfeld, das mit 100 Millionen Tesla mehr als 1000 Milliarden Mal stärker ist als das irdische. Der Pulsar versorgt den berühmten Krebsnebel, der sich etwa 6000 Lichtjahre von der Erde entfernt im Sternbild Stier befindet, mit Energie. Sowohl der Pulsar als auch der Nebel sind Überreste einer Supernova, die im Jahr 1054 explodierte und sich eine Zeitlang dem bloßem Auge sogar am Taghimmel zeigte.

Neutronensterne sind extrem verdichtete Kugeln mit einer Masse ähnlich jener der Sonne, jedoch mit Durchmessern von lediglich 20 Kilometern. Was aber macht Neutronensterne zu Pulsaren, von denen die Astrophysiker in unserer Milchstraße rund 2000 kennen? Neutronensterne rotieren äußerst regelmäßig und sehr schnell, ein „Tag“ dauert auf ihnen zwischen einer Millisekunde und zehn Sekunden. Während seiner Drehung sendet der Stern ständig geladene Teilchen aus, hauptsächlich Elektronen und Positronen (positiv geladene Elektronen).

Die Teilchen bewegen sich entlang von Magnetfeldlinien, die wiederum mit derselben Geschwindigkeit rotieren wie der Neutronenstern selbst. Dabei geben sie gebündelte Strahlung in allen möglichen Bereichen des Spektrums ab, von Radiowellen bis hin zum Gammalicht. Überstreicht ein solches Strahlenbündel die Sichtlinie zur Erde, dann blitzt der Stern kurz auf – ähnlich wie das Signal eines Leuchtturms.

Schon vor einigen Jahren haben die Magic-Teleskope Gammastrahlung vom Krebspulsar mit einer Energie von mehr als 25 GeV empfangen und dabei die von Satelliten gemessene Grenze um das Fünffache übertroffen. Diese Strahlung, so schlossen die Forscher damals, muss mindestens 60 Kilometer über der Oberfläche des Neutronensterns entstehen. Der Grund: Die hochenergetischen Lichtteilchen werden vom Magnetfeld des Sterns so wirksam abgeschirmt, dass eine Quelle sehr nahe am Stern bei derart hohen Energien gar nicht gesehen werden könnte.

Nun zeigen die Messungen von Magic über einen Zeitraum von zwei Jahren, dass der pulsierende Ausstoß mit einer Energie von 400 GeV weit über die erwarteten Werte hinausgeht – und das auch noch in extrem kurzen Impulsen von etwa einer Millisekunde Dauer. Das Ergebnis stellt die bisherigen Theorien über Pulsare in Frage, denn bisher galten für alle diese Objekte deutlich niedrigere Energieobergrenzen.

Ein neues theoretisches Modell des mit dem Magic-Team kooperierenden Theoretikers Kouichi Hirotani von Academia Sinica des Institute of Astronomy and Astrophysics in Tawain erklärt das Phänomen mit einem kaskadenartigen Vorgang: Danach werden sekundäre Teilchen produziert, welche die von der Magnetosphäre des Pulsars gebildete Barriere überwinden können. Eine andere mögliche Erklärung von Felix Aharonian von Dublin Institute for Advanced Studies und weiteren Forschern verbindet dieses Emissionsmerkmal mit der ebenso rätselhaften Physik des dunklen Pulsarwinds – einem Strom aus Elektronen und Positronen sowie elektromagnetischer Strahlung, der letztlich im Krebsnebel aufgeht.

Doch auch die aktuellen Modelle erklären weder die extrem hohe Energie noch die Kürze der Impulse befriedigend. So hoffen die Astrophysiker, dass zukünftige Beobachtungen hierzu die Datenstatistik verbessern und das Rätsel lösen helfen. Das könnte neues Licht auf die Familie der Pulsare werfen – und auf den Krebsnebel selbst, der als eines der meist studierten Objekte unserer Milchstraße gilt.

Ansprechpartner

Dr. Masahiro Teshima
Director MPI for Physics, Chair of the MAGIC Collaboration Board
Max-Planck-Institut für Physik, München
Telefon: +49 89 32354-301
E-Mail: masahiro.teshima@mpp.mpg.de
Dr. Razmik Mirzoyan
Project Leader, Co-Spokesperson MAGIC Collaboration
Max-Planck-Institut für Physik, München
Telefon: +49 89 32354-328
E-Mail: razmik.mirzoyan@mpp.mpg.de
Silke Zollinger
Referentin für Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Physik, München
Telefon: +49 89 32354-292
Fax: +49 89 3226-704
E-Mail: silke.zollinger@mpp.mpg.de
Originalpublikation
MAGIC Collaboration, J. Aleksic et al., R.K. Bock, D. Borla Tridon, E. Carmona, P. Colin, C. Fruck, D. Häfner, J. Hose, T. Jogler, H. Kellermann, J. Krause, E. Lorenz, D. Mazin, R. Mirzoyan, N. Nowak, R. Orito, D. Paneque, K. Saito, T.Y. Saito, T. Schweizer, M. Shayduk, B. Steinke, H. Takami, M. Teshima, R.M. Wagner
Phase-resolved energy spectra of the Crab pulsar in the range of 50-400GeV measured with the MAGIC telescopes

Astronomy & Astrophysics, 30. März 2012

Dr. Masahiro Teshima | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5569740/Kraftwerk_Krebsnebel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics