Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kraftmesser für molekulare Bindungen

17.08.2012
Haftkraft zwischen einzelnen Molekülen erstmals direkt experimentell ermittelt

Wie stark Superkleber, Haftmagnete und Klemmverbindungen zusammenhalten, lässt sich durch mechanische Belastungstests ziemlich präzise bestimmen. Anders sieht es auf mikroskopischer Ebene aus: Wie stark ein einzelnes Molekül an einer Oberfläche haftet, ließ sich bisher nicht direkt messen.


Zur Ermittlung einzelner Werte für verschiedene Bindungstypen werden die Messergebnisse mit Daten aus Computersimulationen verglichen. Quelle: Forschungszentrum Jülich

Jülicher Physiker haben in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters (DOI: 10.1103/PhysRevLett.109.076102) eine neue Methode vorgestellt, die dies ändern könnte. Mit einem Rasterkraftmikroskop haben sie erstmals auf direktem Weg die Haftkraft einzelner Moleküle an Oberflächen ermittelt. Dabei konnten sie zum ersten Mal auch gezielt die Beiträge einzelner Bindungstypen wie der Van-der-Waals-Kräfte oder der chemischen Bindungen feststellen.

Bisherige experimentelle Methoden lieferten nur eine grobe Vorstellung davon, wie stark einzelne organische Moleküle durch verschiedene, sich gegenseitig überlagernde Kräfte an einer Oberfläche haften. Auch auf theoretischem Weg ist diese Frage nicht eindeutig zu lösen. Die Van-der-Waals-Kräfte etwa entstehen, weil die Elektronen, die sich in einer Art "Elektronenwolke" um das Molekül herum befinden, nicht gleich verteilt sind und diese Verteilung sich zudem ständig ändert. Die ungleichen Ladungsverteilungen beeinflussen sich gegenseitig, was den Effekt noch verstärkt und dazu führt, dass sich die Elektronen noch mehr verschieben. Aufgrund der vielen beteiligten Teilchen und der komplexen Wechselwirkungen lassen sich die resultierenden Kräfte nur annäherungsweise berechnen, mit Methoden, die sich derzeit noch in der Entwicklung befinden. Die neue Jülicher Methode ermöglicht es dagegen erstmalig, den Anteil der Van-der-Waals-Kraft und anderer Bindungstypen präzise experimentell zu bestimmen.

Die Wissenschaftler aus der Helmholtz-Nachwuchsgruppe "Complex Transport Regimes in Low Temperature Scanning Tunneling Microscopy" nutzen für ihr Verfahren unter anderem aus, dass sich die verschiedenen Bindungstypen unterschiedlich stark abschwächen. "Entfernt man ein Molekül kontinuierlich von der Oberfläche, so spürt es anfänglich noch alle Wechselwirkungen, aber schon nach einigen Nanometern bleibt nur die Van der Waals-Anziehung übrig", erläutert Dr. Christian Wagner aus dem Jülicher Peter Grünberg Institut. "Für eine chemische Bindung müssen sich die Elektronenwolken von Molekül und Oberfläche überlappen. Für die Van-der-Waals-Wechselwirkung ist dies nicht notwendig."

"Dieses Verfahren ist eine fundamentale, messtechnische Neuerung in der Oberflächenphysik. Durch seinen universellen Charakter ist es vorstellbar, auch Daten zu gewinnen, die in ganz unterschiedlichen anderen Gebieten, etwa in der Pharma- und Energieforschung, relevant sind. Es ist meines Wissens nach die einzige Möglichkeit, die Bindungsenergie einzelner Moleküle an Oberflächen direkt zu bestimmen", betont der Leiter der Forschungsgruppe, Dr. Ruslan Temirov, vom Jülicher Peter Grünberg Institut.

Als Modellmolekül haben die Jülicher Wissenschaftler mit der Verbindung Perylentetracarbonsäuredianhydrid (PTCDA) experimentiert, die aus sieben Kohlenstoffringen und insgesamt sechs Sauerstoffatomen an den Enden besteht. Den Messungen zufolge beträgt die Bindungsenergie eines solchen Einzelmoleküls an eine Gold-Oberfläche rund 2,5 Elektronenvolt (eV) und nicht 2,0 eV, wie durch frühere Berechnungen vorhergesagt. Ein Großteil davon, in der Größenordnung von 100 meV für jedes der 24 Kohlenstoff- und sechs Sauerstoffatome, geht auf Van-der-Waals-Kräfte zurück. Vergleiche sind schwierig. "Die gesamte Bindungsenergie entspricht umgerechnet 4 mal 10 hoch minus 19 Joule – das ist eine Null mit achtzehn Nullen hinter dem Komma. Diese Energie reicht gerade aus, um ein Staubkorn um den Durchmesser eines Wasserstoffatoms anzuheben", so Wagner.

Für ihre Messung platzierten die Forscher das PTCDA-Molekül auf einer Goldunterlage und kontaktierten es an einer Ecke mit dem auf ein einzelnes Atom zugespitzten Tastkopf eines Rasterkraftmikroskops. Dann hoben sie das längliche Molekül schrittweise an, bis es sich vollständig ablöste. Die Bindungskräfte zwischen Molekül und Oberfläche machen sich dabei durch Frequenzänderungen an der schnell schwingenden Mikroskopspitze bemerkbar, die an einer kleinen Quarzstimmgabel klebt.

Um die gesuchte Stärke der verschiedenen Bindungstypen zu ermitteln, haben die Jülicher Physiker die Messergebnisse mit Daten aus Computersimulationen verglichen. In Zusammenarbeit mit Experten vom Jülich Supercomputing Centre (JSC) ermittelten sie präzise, mit welcher Form der Bindung zwischen Molekül und Oberfläche die Experimente am besten übereinstimmen. Dafür wurden insgesamt 100 Millionen unterschiedliche Bindungspotenziale auf dem Jülicher Superrechner JUDGE getestet, für rund 4000 von ihnen wurde der Ablösevorgang komplett simuliert. Die in der Kombination aus Simulation und Experiment gewonnenen Parameter lassen sich ohne weiteren Aufwand auf ähnliche Fälle übertragen. Die Jülicher Physiker konnten damit auch die Bindungskräfte von NTCDA, einem Modellmolekül, das ähnlich wie PTCDA aufgebaut ist, korrekt vorhersagen.

Originalveröffentlichung:

Christian Wagner, Norman Fournier, Stefan Tautz, Ruslan Temirov
Measurement of the Binding Energies of the Organic/Metal Perylene-teracarboxylic-acid-dianhydride/Au(111) Bonds by Molecular Manipulation using an Atomic Force Microscope
Phys. Rev. Lett.; DOI: 10.1103/PhysRevLett.109.076102


Weitere Informationen:
Forschung am Peter Grünberg Institut, Bereich Functional Nanostructures at Surfaces (PGI-3):

http://www.fz-juelich.de/pgi/pgi-3/EN/Home/home_node.html

Pressemitteilung vom 27. Juli 2011:
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2011/11-07-27molekulareDraehte.html

Ansprechpartner
Dr. Christian Wagner, Peter Grünberg Institut, Bereich Functional Nanostructures at Surfaces (PGI-3)
Tel. 02461 61-3538
c.wagner@fz-juelich.de

Pressekontakt:
Erhard Zeiss
Tel. 02461 61-1841
e.zeiss@fz-juelich.de

Erhard Zeiss | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2012/12-08-16Kraftmesser.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein neuer Blick auf „seltsame Metalle“
17.01.2020 | Technische Universität Wien

nachricht Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik
16.01.2020 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik

Um den Transfer von Forschungsentwicklungen aus dem Bereich der Quantensensorik in industrielle Anwendungen voranzubringen, entsteht am Fraunhofer IAF ein Applikationslabor. Damit sollen interessierte Unternehmen und insbesondere regionale KMU sowie Start-ups die Möglichkeit erhalten, das Innovationspotenzial von Quantensensoren für ihre spezifischen Anforderungen zu evaluieren. Sowohl das Land Baden-Württemberg als auch die Fraunhofer-Gesellschaft fördern das auf vier Jahre angelegte Vorhaben mit jeweils einer Million Euro.

Das Applikationslabor wird im Rahmen des Fraunhofer-Leitprojekts »QMag«, kurz für Quantenmagnetometrie, errichtet. In dem Projekt entwickeln Forschende von...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: Wie Zellen ihr Skelett bilden

Wissenschaftler erforschen die Entstehung sogenannter Mikrotubuli

Zellen benötigen für viele wichtige Prozesse wie Zellteilung und zelluläre Transportvorgänge strukturgebende Filamente, sogenannte Mikrotubuli.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2020

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemiker lassen Bor-Atome wandern

17.01.2020 | Biowissenschaften Chemie

Infektiöse Proteine bei Alzheimer

17.01.2020 | Biowissenschaften Chemie

Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

17.01.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics