Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosmologie: Lehren aus der Leere

16.08.2016

Ein Forscherteam um LMU-Physiker Nico Hamaus berechnet die Dynamik kosmischer Hohlräume und zieht daraus Rückschlüsse auf unser gesamtes Universum.

Unser Universum besteht zum großen Teil aus Leere, den sogenannten kosmischen Hohlräumen (Cosmic Voids). Sie dehnen sich immer weiter aus, da die wenige in ihnen enthaltende Materie aufgrund der Schwerkraft an ihre Ränder strebt.


Die abgebildete Simulation zeigt die Verteilung der Dunklen Materie in unserem Universum: Die Galaxien sind ungleichmäßig verteilt und von Hohlräumen umgeben. (Abbildung: Nico Hamaus, LMU)

So ähnelt das Universum einem kosmischen Netzwerk mit großen weitgehend leeren Blasen, die mit Filamenten von Materie verbunden sind, auf denen sich die Galaxien verteilen. LMU-Physiker Dr. Nico Hamaus und seine Kollegen haben nun auf Basis von Daten des Sloan Digital Sky Surveys (SDSS), bei dem Wissenschaftler mit einem Teleskop die Struktur des Universums kartieren, Aufbau und Geometrie der Hohlräume berechnet.

Die Analysen der Forscher zeigen, mit welcher Dynamik sich die Hohlräume ausdehnen. „Nico Hamaus ist es zum ersten Mal gelungen, mit der Analyse der kosmischen Hohlräume kosmologische Modelle einzuschränken“, sagt Professor Jochen Weller von der Universitätssternwarte der LMU.

Über dieses Ergebnis berichtet Hamaus aktuell in der Fachzeitschrift Physical Review Letters. Seine Berechnungen zeigen, dass die Analyse kosmischer Hohlräume ein geeignetes Vorgehen ist, um die Gravitation in den leeren Regionen des Universums zu untersuchen und gleichzeitig die gesamte Materiedichte des Universums zu bestimmen.

Damit leistet seine Untersuchung einen wichtigen Beitrag zu der Frage, warum sich das Universum immer schneller ausdehnt. Bislang gibt es in der Kosmologie darauf zwei mögliche Antworten: Es liegt an der Dunklen Energie, die fast 70 Prozent unseres Universums ausmacht und der eine Art Anti-Gravitationskraft zugeschrieben wird, oder Einsteins Allgemeine Relativitätstheorie ist nur eingeschränkt gültig und muss durch eine neue Theorie der Schwerkraft ersetzt werden.

„Falls es im Universum Abweichungen von der Allgemeinen Relativitätstheorie gibt, wäre dies insbesondere in den Hohlräumen der Fall. Wir haben in unserer Analyse aber keine signifikanten Abweichungen festgestellt“, sagt Hamaus. Das Ergebnis bestätigt also die vorherrschende Vorstellung von Gravitation im Universum, die bislang in Bezug auf die Hohlräume nicht geprüft worden war, und unterstützt die Annahme einer Dunklen Energie in Form einer kosmologischen Konstante. „Unsere Studie zeigt, dass wir durch die Analyse kosmischer Hohlräume noch viel über den Ursprung und die Entwicklung unseres Universums lernen können.“

Publikation:
Nico Hamaus, Alice Pisani, Paul M. Sutter, Guilhem Lavaux, Stéphanie Escoffier, Benjamin D. Wandelt, Jochen Weller:
Constraints on cosmology and gravity from the dynamics of voids
In: Physical Review Letters 2016

Kontakt:
Dr. Nico Hamaus
Universitäts-Sternwarte München
Fakultät für Physik der LMU
E-Mail: hamaus@usm.lmu.de
Tel: +49 (0)89 2180 9294

Luise Dirscherl | Ludwig-Maximilians-Universität München
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lichtpulse bewegen Spins von Atom zu Atom
17.02.2020 | Forschungsverbund Berlin e.V.

nachricht Physik des Lebens - Die Logistik des Molekül-Puzzles
17.02.2020 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Im Focus: Charakterisierung von thermischen Schnittstellen für modulare Satelliten

Das Fraunhofer IFAM in Dresden hat ein neues Projekt zur thermischen Charakterisierung von Kupfer/CNT basierten Scheiben für den Einsatz in thermalen Schnittstellen von modularen Satelliten gestartet. Gefördert wird das Projekt „ThermTEST“ für 18 Monate vom Bundesministerium für Wirtschaft und Energie.

Zwischen den Einzelmodulen von modularen Satelliten werden zur Kopplung eine Vielzahl von Schnittstellen benötigt, die nach ihrer Funktion eingeteilt werden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Supercomputer „Hawk“ eingeweiht: Höchstleistungsrechenzentrum der Universität Stuttgart erhält neuen Supercomputer

19.02.2020 | Informationstechnologie

Soziale Netzwerke geben Aufschluss über Dates von Blaumeisen

19.02.2020 | Biowissenschaften Chemie

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics