Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosmische Schlange

20.11.2018

Das VLT der ESO fotografiert Details einer komplexen, gewundenen Struktur, die von kollidierenden Sternwinden geformt wurde

Das VISIR-Instrument des VLT der ESO hat dieses atemberaubende Bild eines neu entdeckten, massereichen Dreifachsternsystems aufgenommen. Nach der altägyptischen Gottheit Apep benannt, ist dies vielleicht die erste Entdeckung eines Vorläufers eines Gammastrahlenausbruchs.


Der Staubwirbel des Apep

Bild: ESO/Callingham et al.

Dieser schlangenartige Wirbel, der vom VISIR-Instrument am Very Large Telescope (VLT) der ESO erfasst wurde, hat eine explosive Zukunft vor sich; es ist ein Wolf-Rayet-Sternsystem und eine wahrscheinliche Quelle für eines der energetischsten Phänomene im Universum – einen lang anhaltenden Gammastrahlenausbruch (englisch: Gamma Ray Burst, kurz GRB).

„Es handelt sich um das erste derartige Objekt, das in unserer eigenen Galaxie entdeckt wurde“, erklärt Joseph Callingham vom Netherlands Institute for Radio Astronomy (ASTRON) und Erstautor der Studie über dieses Phänomen. „Wir hätten nie erwartet, dass wir ein solches System in unserem eigenen Garten finden würden“ [1].

Es besteht aus einem Komplex massereicher Sterne, die von einem „Windrad“ aus Staub umgeben sind. Offiziell ist das System nur unter sperrigen Katalognummern wie 2XMM J160050.7-514245 bekannt. Die Astronomen entschieden sich jedoch, diesem faszinierenden Objekt einen eingängigeren Namen zu geben – „Apep“, auch bekannt als „Apophis“.

Apep erhielt seinen Beinamen wegen seiner gewundenen Form, die an eine Schlange erinnert, die sich um die zentralen Sterne windet. Sein Namensgeber war eine altägyptische Gottheit, eine gewaltige Schlange, die das Chaos verkörpert – passend für ein so mächtiges System. Es wurde angenommen, dass Ra, der Sonnengott, jede Nacht mit Apep kämpfen würde; Gebet und Verehrung sicherten Ras Sieg und die Rückkehr der Sonne.

GRBs gehören zu den mächtigsten Explosionen im Universum. Sie dauern zwischen einigen Tausendstelsekunden und einigen Stunden und können so viel Energie freisetzen, wie die Sonne über ihre gesamte Lebensdauer produzieren wird. Langlebige GRBs – solche, die länger als 2 Sekunden anhalten – werden vermutlich durch die Supernova-Explosionen von schnell rotierenden Wolf-Rayet-Sternen verursacht.

Einige der massereichsten Sterne entwickeln sich gegen Ende ihres Lebens zu Wolf-Rayet-Sternen. Diese Phase ist kurzlebig, und Wolf-Rayets überleben in diesem Zustand nur wenige hunderttausend Jahre – kosmologisch gesehen ein Augenzwinkern. In dieser Zeit werfen sie riesige Mengen an Material in Form eines starken Sternwindes ab, der die Materie mit Millionen von Kilometern pro Stunde nach außen schleudert; die Sternwinde von Apep wurden auf erstaunliche 12 Millionen km/h gemessen.

Diese Sternwinde haben die komplexen Schwaden um das Dreifachsternsystem herum geschaffen, das aus einem Doppelsternsystem und einem begleitenden Einzelstern besteht, die durch die Schwerkraft miteinander verbunden sind. Obwohl nur zwei sternförmige Objekte im Bild sichtbar sind, ist die untere Quelle tatsächlich ein unaufgelöster doppelter Wolf-Rayet-Stern. Dieser Doppelstern ist verantwortlich für die Gestalt der schlangenartigen Wirbel um Apep, die sich im Gefolge der kollidierenden Sternwinde der beiden Wolf-Rayet-Sterne bilden.

Im Vergleich zu der außergewöhnlichen Geschwindigkeit der Winde von Apep wirbelt das Windrad selbst in gemächlichem Tempo nach außen und „kriecht“ mit weniger als 2 Millionen km/h dahin. Die ungeheure Diskrepanz zwischen der Geschwindigkeit der schnellen Sternwinde von Apep und der des gemächlichen Windrades aus Staub wird damit begründet, dass einer der Sterne im Binärsystem sowohl einen schnellen als auch einen langsamen Wind auslöst, die jeweils in verschiedene Richtungen verlaufen.

Dies würde bedeuten, dass sich der Stern in einer nahezu kritischen Rotation befindet, d.h. sich so schnell dreht, dass er sich fast selbst auseinanderreißt. Es wird angenommen, dass ein Wolf-Rayet-Stern mit einer solch schnellen Rotation einen langlebigen GRB erzeugt, wenn sein Kern am Ende seiner Lebensdauer zusammenbricht.

Endnoten

[1] Callingham, jetzt am Netherlands Institute for Radio Astronomy (ASTRON), hat einen Teil dieser Arbeiten durchgeführt, während er an der University of Sydney mit dem Leiter des Forschungsteams Peter Tuthill zusammenarbeitete. Zusätzlich zu den Beobachtungen mit Hilfe von ESO-Teleskopen verwendete die Gruppe auch das Anglo-Australian Telescope am Siding Spring Observatory, Australien.

Weitere Informationen

Diese Studie wurde in einem Artikel mit dem Titel "Anisotropic winds in Wolf-Rayet binary identify potential gamma-ray burst progenitor" vorgestellt, der am 19. November 2018 in Nature Astronomy erschien.

Das Team bestand aus: J. R. Callingham (ASTRON, Dwingeloo, Niederlande), P. G. Tuthill (Sydney Institute for Astronomy [SIfA], University of Sydney, Australien), B. J. S. Pope (SIfA; Center for Cosmology and Particle Physics, New York University, USA; NASA Sagan Fellow), P. M. Williams (Institute for Astronomy, University of Edinburgh, UK), P. A. Crowther (Department of Physics & Astronomy, University of Sheffield, UK), M. Edwards (SIfA), B. Norris (SIfA) und L. Kedziora-Chudczer (School of Physics, University of New South Wales, Australien).

Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Die Organisation hat 16 Mitgliedsländer: Belgien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Irland, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Hinzu kommen das Gastland Chile und Australien als strategischer Partner. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist außerdem einer der Hauptpartner bei zwei Projekten auf Chajnantor, APEX und ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das Extremely Large Telescope (ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Kontaktinformationen

Markus Nielbock
ESO Science Outreach Network - Haus der Astronomie
Heidelberg, Deutschland
Tel: +49 (0)6221 528-134
E-Mail: eson-germany@eso.org

Joseph Callingham
Postdoctoral Research Fellow — Netherlands Institute for Radio Astronomy (ASTRON)
Dwingeloo, The Netherlands
Tel: +31 6 2929 7915
E-Mail: callingham@astron.nl

Calum Turner
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6670
E-Mail: pio@eso.org

Connect with ESO on social media

Dies ist eine Übersetzung der ESO-Pressemitteilung eso1838.

Markus Nielbock | ESO Media Newsletter

Weitere Berichte zu: ASTRON ESO Haus der Astronomie Sternwinde Telescope VLT

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Direkte Abbildung von Riesenmolekülen
24.05.2019 | Max-Planck-Institut für Quantenoptik

nachricht MiLiQuant: Quantentechnologie nutzbar machen
23.05.2019 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Direkte Abbildung von Riesenmolekülen

Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.

Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich....

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Effizientes Wertstoff-Recycling aus Elektronikgeräten

24.05.2019 | Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schweißen ohne Wärme

24.05.2019 | Maschinenbau

Bakterien in fermentierten Lebensmitteln interagieren mit unserem Immunsystem

24.05.2019 | Biowissenschaften Chemie

Wie Einzelzellen und Zellverbünde beim Navigieren zusammenwirken

24.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics