Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

«Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

14.11.2017

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für ältere Galaxien? Das Hubble-Teleskop ermöglicht es den Astronomen seit rund einem Jahrzehnt, sechs oder sieben Milliarden Lichtjahre entfernte Sternensysteme zu beobachten.


Ohne eine sehr hohe Auflösung (linkes Bild) werden die zwei Sternenhaufen als eine Einheit wahrgenommen.

(Bild: UZH)


Die kosmische Schlange, beobachtet vom Astronomischen Institut der Universität Genf.

(Bild: Université de Genève)

Hubble gibt Hinweise darauf, dass dort Galaxien aus Gasnebeln und Sternhaufen mit einem Durchmesser von über 3000 Lichtjahren existieren. Diese riesigen Stern- und Gasansammlungen – rund tausendmal grösser als die in der Geschichte des Universums relativ junge Milchstrasse­ – scheinen bei älteren Galaxien die Norm zu sein.

Gravitationslinse erkennt Details ferner Galaxien

Die genaue Untersuchung dieser Phänomene ist auf so langen Distanzen nur schwer möglich. Ein Team des Observatoriums der Universität Genf und des Zentrums für Theoretische Astrophysik und Kosmologie der Universität Zürich nutzen nun einen speziellen Effekt des Universums, der eigenen Gesetzmässigkeiten folgt:

Das Teleskop wird auf ein sehr massives Objekt gerichtet, dessen Gravitationsfeld das Licht einer dahinter liegenden, weit entfernten Galaxie beeinflusst. Durch diese sogenannte Gravitationslinse betrachtet, verändert sich die Ausbreitungsrichtung des Lichtes des dahinterliegenden Objektes. Dadurch wird das Bild vergrössert und mehrfach vervielfältigt.

So konnten die Forschenden verzerrte, in die Länge gezogene, sich fast berührende Bilder wahrnehmen, die wie eine kosmische Schlange aussehen. «Die durch die Linse vergrösserte Abbildung ist viel genauer und heller. Wir können hundertmal kleinere Details in der Galaxie erkennen und fünf unterschiedliche Auflösungen vergleichen, um Struktur und Grösse dieser gigantischen Sternhaufen zu bestimmen», sagt Daniel Schaerer, Professor am Observatorium der Universität Genf.

Beobachtungen bestätigen Simulationen der UZH

Die internationale Forschergruppe entdeckte, dass die Sternenhaufen nicht ganz so gross und massiv sind, wie die ersten Bilder von Hubble vermuten liessen. Damit stützten sie die bereits früher am Supercomputer gemachte Simulationen von Valentina Tamburello vom Institute of Computational Science der Universität Zürich. «Dank der unglaublich hohen Auflösung der kosmischen Schlange konnten wir unsere Berechnungen mit den gemachten Beobachtungen vergleichen. Das war für uns ein besonderer Glücksfall», erklärt die Letztautorin der Studie.

Das Fazit: Entgegen der bisherigen Annahme setzt sich die untersuchte Galaxie nicht aus einem grossen, sondern aus mehreren kleinen Sternhaufen zusammen. «Offenbar können sich gigantische Klumpen in solchen weit entfernten Galaxien nur unter ganz speziellen Bedingungen entwickeln, etwa bei kleineren Verschmelzungen oder unter Einfluss von Kaltgas», so Tamburello. Dass dies hier nicht der Fall ist, war vorher aufgrund der grossen Distanz gar nicht nachweisbar gewesen. In ihrer Doktorarbeit schloss Timburello bereits Ende 2016, dass die tatsächliche Masse und Grösse der Sternhaufen nur mit einer höheren Auflösung zu erfassen sei.

Lucio Mayer, Professor am Institute of Computational Science, unterstreicht: «Die Beobachtungen der Universität Genf haben somit die neuen Erkenntnisse aus den Simulationen bewiesen. Dies zeigt, dass numerische Simulationen astronomische Beobachtungen voraussagen und antizipieren können.»


Literatur:

Antonio Cava, Daniel Schaerer; Johan Richard, Pablo G. Perez-Gonzalez, Miroslava Dessauges-Zavadsky, Lucio Mayer and Valentina Tamburello. The nature of giant clumps in distant galaxies probed by anatomy of the Cosmic Snake. November 13, 2017, Nature Astronomy, DOI: 10.1038/s41550-017-0295-x

Kontakt:
Prof. Lucio Mayer
Institute for Computational Science
Universität Zürich
Tel. +41 44 635 61 98
E-Mail: lmayer@physik.uzh.ch

Antonio Cava
Institut für Astronomie
Université de Genève
Tel. +41 22 379 24 02
E-Mail: antonio.cava@unige.ch

Weitere Informationen:

http://www.kommunikation.uzh.ch/static/videos/uzh/2017/movie_with_zoom_Valentina... Video

Beat Müller | Universität Zürich
Weitere Informationen:
http://www.uzh.ch/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rasende Elektronen unter Kontrolle
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kometen als Wasserträger für Exoplaneten
15.11.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Emulsionen masschneidern

15.11.2018 | Materialwissenschaften

LTE-V2X-Direktkommunikation für mehr Verkehrssicherheit

15.11.2018 | Informationstechnologie

Daten „fühlen“ mit haptischen Displays

15.11.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics