Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kosmische Jets von jungen Sternen formen sich durch Magnetfelder

17.10.2014

Astrophysikalische Jets gehören zu den spektakulärsten Phänomenen des Universums: Aus dem Zentrum von Schwarzen Löchern, Quasaren oder Protosternen schießen diese Materie-Strahlen mitunter mehrere Lichtjahre weit ins All.

Ein neues Modell, das erklärt, wie Magnetfelder solche Ausstöße in jungen Sternen formen, wurde nun erstmals erfolgreich von einem internationalen Forscherteam im Labor getestet.


Künstlerische Darstellung der Geburt eines Sternes: Vertikale, helle Jets werden aus dem Zentrum der Gaswolke ausgestoßen, die ein massiver Baby-Stern um sich angesammelt hat.

ESO/L. Calada

Wissenschaftler des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) waren an der Untersuchung beteiligt, deren Resultate jetzt in der Fachzeitschrift Science veröffentlicht wurden. Die dabei gewonnen Erkenntnisse könnten in Zukunft sogar bei der Krebstherapie mit Protonenstrahlen weiterhelfen.

Wann immer ein Objekt im Weltall um sich herum eine rotierende Scheibe aus Materie bildet, stehen die Chancen gut, einen „Jet“ zu beobachten. Dabei handelt es sich um einen dünnen, geradlinigen Ausstoß von Materie, der sich vom Zentrum der Scheibe ausbreitet und dem Gebilde insgesamt die Form eines Kreisels gibt. Insbesondere bei der Entstehung von Sternen kann man derartige Strukturen beobachten, doch bislang ist nicht geklärt, wie genau sich die dünnen Strahlen inmitten der Scheibe formen.

Zusammen mit Kollegen aus Europa, Amerika und Asien haben HZDR-Forscher den Prozess im Labor nachgestellt: Eine Probe aus Kunststoff wurde hierzu am Labor für die Anwendung intensiver Laserstrahlen (Laboratoire pour l'Utilisation des Lasers Intenses – LULI) in Frankreich mit einem Laser beschossen.

Dadurch gerieten die Elektronen im Inneren des „Targets“ in Bewegung und das zuvor feste Kunststoff-Objekt verwandelte sich zum leitfähigen Plasma. „Man muss sich darunter eine Art ‚heiße Wolke‘ aus Elektronen und Ionen vorstellen, die sich sehr schnell ausbreitet. In kleinem Maßstab repräsentiert das Plasma die Materieansammlung eines jungen Sterns“, erläutert Professor Thomas Cowan, Co-Autor der Studie und Direktor des Instituts für Strahlenphysik am HZDR.

Junge Sterne im Miniaturformat für das Labor

Zugleich – und das war ein entscheidender Kniff des Experiments – wurde das Plasma einem sehr starken, gepulsten Magnetfeld ausgesetzt. Die Hypothese der Physiker: Unter Einfluss des Magnetfelds fokussiert sich das normalweise breit gestreute Plasma und bildet eine Aushöhlung im Inneren. Dies führt schließlich zu einer Stoßwelle, aus der ein sehr dünner Strahl hervorgeht – ein Jet.

Das Experiment wurde so konstruiert, dass es auf die real im Universum anzutreffenden Bedingungen hochgerechnet werden kann: In nur 20 Nanosekunden – über 100.000 Mal schneller als der Flügelschlag einer Fliege – bildet das Labor-Plasma Strukturen aus, wie der Jet eines jungen Sterns in rund sechs Jahren.

Auf diese Weise konnte das Modell mit den astronomischen Beobachtungen überprüft werden, die seit einigen Jahren durch Weltraumteleskope möglich sind. Dabei zeigte sich eine sehr genaue Übereinstimmung der Daten. So kommt es beispielsweise in einem Jet dazu, dass sich Teilchenströme überkreuzen, was zu einer zusätzlichen Erhitzung an solchen Punkten führt. „Röntgenmessungen von echten Jets zeigen an den gleichen Stellen Auffälligkeiten wie unser maßstabsgetreues Plasma-Modell im Labor“, verdeutlicht Cowan.

Damit konnten die Forscher erstmals ein Modell vorlegen, das die Entstehung von Jets allein durch Magnetfelder erklären kann. In vorherigen Ansätzen musste stets auch die Rotation der Materie um den jungen Stern als weiterer Einflussfaktor einbezogen werden.

Die Erkenntnis, dass sich ein Plasma derart fokussieren lässt, könnte zudem auch einen praktischen Nutzen für die Medizin haben. So sei es laut Cowan denkbar, dass mit Hilfe von gepulsten Magnetfeldern ein besonders dünner Protonenstrahl für die Strahlentherapie erzeugt werden könnte. Florian Kroll, HZDR-Doktorand und Co-Autor der Studie, erforscht genau dieses Thema.

Spezieller Pulsgenerator vom Hochfeld-Magnetlabor Dresden entworfen

Um überhaupt starke gepulste Magnetfelder für das Experiment produzieren zu können, wurde auf die Erfahrung des Hochfeld-Magnetlabors Dresden am HZDR zurückgegriffen: „Wir haben einen speziellen Pulsgenerator entwickelt, der es den Kollegen in Frankreich ermöglichte, in engen Laborräumlichkeiten so starke Felder zu produzieren“, sagt Dr. Thomas Herrmannsdörfer, Abteilungsleiter am Hochfeld-Magnetlabor. Gerade mal so groß wie ein Kleiderschrank ist der Generator, der Ströme bis zu 300 Kiloampere produzieren kann.

Die Konstruktion einer so kompakten Anlage war laut Herrmannsdörfer vor allem eine technische Herausforderung: „Unsere Elektroingenieure fanden hier recht innovative Lösungen. Das hilft uns nun auch bei der Entwicklung von Generatoren für industrielle und medizintechnische Anwendungen weiter.“ Der Pulsgenerator befindet sich derzeit noch immer im französischen Laserlabor in Palaiseau bei Paris, denn schon ab Dezember wollen die Dresdner Wissenschaftler wieder mit den Kollegen am LULI zusammenarbeiten.

Publikation: B. Albertazzi u.a. (2014). Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field. Science (online ab 17. Oktober 2014).

DOI: 10.1126/science.1259694

Weitere Informationen:
Prof. Dr. Thomas E. Cowan | Institut für Strahlenphysik am HZDR
Tel. +49 351 260 - 2270 | E-Mail: t.cowan@hzdr.de
Dr. Thomas Herrmannsdörfer | Hochfeld-Magnetlabor Dresden am HZDR
Tel. +49 351 260 - 3320 | E-Mail: t.herrmannsdoerfer@hzdr.de

Medienkontakt:
Christine Bohnet | Pressesprecherin
Tel. +49 351 260 2450 | Mobil: +49 160 969 288 56 | c.bohnet@hzdr.de | http://www.hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie:

• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?

Das HZDR ist seit 2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 1.000 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

http://www.hzdr.de

Dr. Christine Bohnet | Helmholtz-Zentrum

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp
18.10.2019 | Forschungsverbund Berlin e.V.

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics