Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kooperierende Moleküle: Physiker der TU Graz untersucht Wechselwirkungen organischer Moleküle

29.10.2012
Leistung im Miniformat: Die elektronischen Bauelemente der Zukunft sollen schneller, leistungsfähiger und immer kleiner sein.
Die Vision der ultimativen Miniaturisierung sind einzelne Moleküle, die elektrisch leiten und schalten. Um dieser Vision näher zu kommen, werden die Wechselwirkungen und physikalischen Eigenschaften von Molekülen genau erforscht. David Egger, Dissertant am Institut für Festkörperphysik der TU Graz, ist dabei auf ein Phänomen gestoßen: Im Kollektiv verhalten sich die chemischen Bauteile nicht als „Einzelkämpfer“, sondern arbeiten zusammen. Die Forschungsarbeit wurde kürzlich im renommierten Fachjournal „Advanced Materials“ publiziert.

Die fortschreitende Miniaturisierung elektronischer Bauelemente ist durch physikalische Grenzen nur eingeschränkt möglich – noch. Wie man diese Grenzen überwinden könnte, wird in der Nanoelektronik erprobt: „Ziel ist es, statt Halbleiter-Mikrostrukturen einzelne Moleküle als elektrische Leiter und Schalter fungieren zu lassen“, erklärt David Egger vom Institut für Festkörperphysik.
Gemeinsam anders als alleine

In seiner Doktorarbeit hat der Physiker in einem Forschungsaufenthalt bei Georg Heimel an der Humboldt-Universität zu Berlin die Eigenschaften von organischen Molekülen in verschiedenen Situationen untersucht. Dabei hat sich ein überraschendes Phänomen offenbart: Zwei organische Moleküle, die individuell betrachtet sehr ähnliche physikalische Eigenschaften haben, zeigen im Kollektiv einer Nanometer dünnen Schicht völlig unterschiedliche Charakteristika. „Wenn die Moleküle kooperieren, ändern sich plötzlich wichtige elektrische Kennzahlen wie die Leitfähigkeit oder das elektrische Verhalten bei Erwärmung“, erklärt Egger. Die Forschungsarbeit, die der junge Wissenschafter in Kooperation mit Kollegen der Humboldt-Universität zu Berlin verfasste, wurde kürzlich im renommierten Fachjournal „Advanced Materials“ publiziert.

Modellierung an Hochleistungsrechnern

Ein grundlegendes Verständnis von derartigen Phänomenen im Nanobereich ist für die Entwicklung neuartiger Bauteile, etwa für die Chipindustrie, essentiell. Da bestimmte physikalische Prozesse für Experimente nur schwer unter kontrollierten Bedingungen zugänglich sind, nutzt Egger zum besseren Verständnis die Modellierung und Simulation an Hochleistungsrechnern und untersucht die Wechselwirkung von Molekülen in dünnen Schichten so unter stabilen Bedingungen.
Biografische Skizze

David Egger wurde 1987 in Klagenfurt geboren. Er studierte Technische Physik an der TU Graz und schloss seinen Master 2010 ab. Derzeit ist er Doktorand bei Egbert Zojer am Institut für Festkörperphysik der TU Graz. David Egger ist Träger des DOC Stipendium der Österreichischen Akademie der Wissenschaften und wurde 2011 mit dem Forschungspreis für Simulation und Modellierung des Landes Steiermark - "Nachwuchsförderung" ausgezeichnet.
Zur Originalarbeit „Polarity Switching of Charge Transport and Thermoelectricity in Self-Assembled Monolayer Devices“: http://dx.doi.org/10.1002/adma.201200872

Rückfragen:
Dipl.-Ing. David Egger
Institut für Festkörperphysik
Tel: +43 (316) 873 8972
Email: david.egger@tugraz.at

Alice Senarclens de Grancy | Technische Universität Graz
Weitere Informationen:
http://www.tugraz.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics