Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Komplexe Gasbewegung im Zentrum der Milchstraße

14.07.2017

Forscher aus Heidelberg und Oxford simulieren diese Bewegung mit einem umfassenden Modell

Wie bewegt sich das Gas im Zentrum der Milchstraße? Mit einer umfassenden Computersimulation ist es Wissenschaftlern der Universität Heidelberg in Zusammenarbeit mit Kollegen der University of Oxford gelungen, die Bewegung der Gaswolken nachzuvollziehen.


Bild: ESA/Hubble & NASA. Acknowledgements: G. Chapdelaine, L. Limatola, and R. Gendler

Die Spiralgalaxie Messier 61, aufgenommen mit dem Hubble Space Telescope. Unsere Milchstraße könnte dieser Galaxie ähneln.

Das neue Modell macht es nunmehr möglich, die komplexe Gasbewegung schlüssig zu beschreiben. Durchgeführt wurden die Arbeiten von den Astrophysikern Dr. Mattia C. Sormani (Heidelberg) und Matthew Ridley (Oxford), auf Heidelberger Seite am Sonderforschungsbereich „Das Milchstraßensystem“ (SFB 881).

Unser Sonnensystem befindet sich in der Randzone einer scheibenförmigen Galaxie mit einem Durchmesser von rund 100.000 Lichtjahren, der Milchstraße. Von der Erde aus lässt sich ihr Aussehen daher nur indirekt beobachten, indem Positionen und Bewegungen von Sternen und Gaswolken gemessen werden. Sehr wahrscheinlich ähnelt die Milchstraße einer sogenannten Balkenspiralgalaxie, einem sehr häufig beobachteten Typ von Galaxie im Universum. Ein bekanntes Beispiel dafür ist die Galaxie M61.

Neben den sichtbaren Sternen befinden sich in der Milchstraße große Mengen interstellaren Gases, dessen Verteilung und Bewegung äußerst komplex ist. Vor allem im Zentrum findet sich ein Missverhältnis zwischen der Menge des vorhandenen Gases und einer geringen Aktivität der Sternentstehung.

„Mit unserer Simulation können wir nicht nur diese Diskrepanzen vorhergehender Modelle aufheben, sondern auch die tatsächlich beobachtete Bewegung des Gases erstaunlich gut wiedergeben“, so Prof. Dr. Ralf S. Klessen, der am Institut für Theoretische Astrophysik am Zentrum für Astronomie der Universität Heidelberg (ZAH) forscht.

In dem neuen Modell bewegen sich die Gaswolken in der Zentralen Molekularen Zone (CMZ) – die innersten 1.500 Lichtjahre der Milchstraße – auf einer ellipsenförmigen Scheibe, die zwei Spiralarme hat. Das Gas aus der Umgebung strömt durch diese beiden Arme in die CMZ. Kollisionen der Gaswolken erzeugen dabei Druckwellen, die Turbulenzen auslösen. „Diese Turbulenzen könnten die Entstehung neuer Sterne verhindern, indem sie das Kollabieren der Gaswolken unterbrechen. Dies würde eine konsistente Erklärung für die bislang unerklärbar geringe Sternentstehungsrate in dieser Region liefern“, sagt Dr. Sormani.

Durch ihre Computersimulation konnten die Wissenschaftler ein räumliches Bild vom Zentrum der Galaxis erstellen und die Position einiger bekannter Gaswolken erstmals innerhalb dieser dreidimensionalen „Karte“ bestimmen. Die Astrophysiker planen nun, ihre Simulation weiter zu optimieren, um ihre Ergebnisse noch besser an die Beobachtungen anzupassen.

Sie wollen außerdem weitere Unklarheiten wie die ausgeprägte Asymmetrie der Gasverteilung in der zentralen Region der Milchstraße klären. Weiterführende Simulationen, die die zeitliche Entwicklung der chemischen Zusammensetzung des Gases verfolgen, sollen diesem Geheimnis auf den Grund gehen.

„Wir gehen davon aus, dass diese Erkenntnisse einen wesentlichen Einfluss auf künftige Untersuchungen zum Aufbau unserer Galaxis haben werden“, betont Prof. Klessen. Die Forschungsergebnisse wurden in den „Monthly Notices of the Royal Astronomical Society“ veröffentlicht.

Originalveröffentlichung:
M.G.L. Ridley, M.C. Sormani, R.G. Treß, J. Magorrian, R.S. Klessen: Nuclear spirals in the inner Milky Way. Monthly Notices of the Royal Astronomical Society (2017) 469 (2): 2251-2262, doi: 10.1093/mnras/stx944

Kontakt:
Dr. Renate Hubele
Sonderforschungsbereich 881 „Das Milchstraßensystem“
Telefon (06221) 528-291
hubele@hda-hd.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://sfb881.zah.uni-heidelberg.de
http://www.uni-heidelberg.de/presse/news2017/pm20170713_milchstrasse.html

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics