Woher kommen die Magnetfelder im Universum?

Sowohl das Gas zwischen den Sternen einer Galaxie als auch das Medium zwischen den Galaxien sind magnetisiert. Bis heute weiß niemand, wie diese Magnetfelder entstanden sind und welche Wirkung sie auf die Entwicklung von Galaxien haben. „Möglicherweise liefert die Radioastronomie eine Antwort auf diese Fragen“, erklärt Professor Dr. Ulrich Klein von der Universität Bonn.

Der Astronom ist Sprecher des neuen Forschungsverbundes, an dem zudem die Universitäten Bochum, Bremen, die LMU München, das Astrophysikalische Institut Potsdam, die Thüringer Landessternwarte Tautenburg sowie die Max-Planck-Institute für Astrophysik in Garching und für Radioastronomie in Bonn beteiligt sind. Als Werkzeug wollen die Wissenschaftler das europäische Radioteleskop LOFAR nutzen.

LOFAR (das Kürzel steht für LOw Frequency ARray) ist gewissermaßen das erste digitale Teleskop der Welt. Klassische Radioteleskope sammeln – ebenso wie die meisten optischen Teleskope – Strahlung mit parabolförmigen Spiegeln. Computergesteuerte Motoren bewegen das Teleskop dazu entlang der scheinbaren Bahn einer Quelle am Himmel. LOFAR benötigt dagegen keine beweglichen Teile und Motoren mehr. Das „Teleskop“ besteht aus einer großen Zahl von Antennen, die fest am Boden montiert sind. Diese Antennen sind über ganz Europa verteilt, mit dem Zentrum im Osten der Niederlande. Ein zentraler Supercomputer in Groningen kombiniert ihre Signale.

LOFAR soll die so genannte Synchrotron-Strahlung von Elektronen nachweisen, die sich nahezu lichtschnell auf engen Kreisbahnen in Magnetfeldern bewegen. Ihre Energie beziehen diese Elektronen aus Stoßwellen, die bei Supernova-Explosionen oder auch bei der Kollision von Galaxien oder gar Galaxienhaufen entstehen. „Die Synchrotron-Strahlung ist der Schlüssel für die Messung kosmischer Magnetfelder“, erläutert Dr. Rainer Beck vom Bonner Max-Planck-Institut für Radioastronomie, der stellvertretende Sprecher der neuen Forschergruppe.

Die Wissenschaftler wollen auch Computersimulationen entwickeln, die ihnen helfen, ihre Messergebnisse zu interpretieren. Ziel ist es, die Entstehung und Struktur der Magnetfelder sowie ihre mögliche Rolle in Galaxien und Galaxienhaufen auf eine theoretische Basis zu stellen.

Kontakt:
Professor Dr. Ulrich Klein
Argelander-Institut für Astronomie der Universität Bonn
Telefon: 0228/73-3674
E-Mail: uklein@astro.uni-bonn.de
Dr. Rainer Beck
Max-Planck-Institut für Radioastronomie Bonn
Telefon: 0228/525-323
E-Mail: rbeck@mpifr-bonn.mpg.de

Media Contact

Frank Luerweg idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer