Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kollektives Verhalten von Fermionen. Teilchen schwingen im gleichen Takt

10.01.2014
Science-Veröffentlichung

Ob Vogelschwärme, Sanddünen oder Straßenverkehr: Im Alltag beobachten wir immer wieder sogenanntes kollektives Verhalten, bei dem sich alle beteiligten Objekte – gewollt oder ungewollt – synchron bewegen.

Ein Forschungsteam des „Hamburg Centre for Ultrafast Imaging (CUI)“ der Universität Hamburg hat nun ein neuartiges Quantensystem realisiert, das aus mehr als einer Million Atome bestand, die sich entgegen aller Erwartungen ebenfalls vollständig kollektiv verhielten. Das berichten die Wissenschaftler in der Ausgabe des Magazins „Science“ vom 10. Januar 2014.

Die CUI-Forscher aus dem Team von Prof. Dr. Klaus Sengstock konnten im Labor erstmals beobachten, wie eine Wolke ultrakalter Kalium-Atome kollektiv schwingt, quasi einen quantenmechanischen Wiener Walzer tanzt. Das Besondere dabei: Es handelt sich um fermionische Teilchen, die in der Physik eigentlich dafür bekannt sind, nicht gemeinsam zu agieren. Fermionen sind eine von zwei grundlegenden Teilchenarten und unterscheiden sich von der anderen Art, den Bosonen, nur durch eine einzige quantenmechanische Eigenschaft: ihren Spin.

„Dafür gibt es kein klassisches Analogon“, erklärt Dr. Christoph Becker, wissenschaftlicher Leiter des Projektes. „Am besten kann man sich den Spin als eine Drehung der Teilchen um sich selbst vorstellen.“ Dieser hat drastische Konsequenzen für das „Sozialverhalten“ von Teilchen. Während Bosonen einen ganzzahligen Spin haben und dazu tendieren, sich alle gleich zu verhalten, sind die Fermionen mit ihrem halbzahligem Spin Einzelgänger, die sich sozusagen soweit wie möglich aus dem Weg gehen.

Fermionen wie z. B. Neutronen, Protonen oder Elektronen sind es auch, aus denen sich Materie zusammensetzt, wodurch kollektives Verhalten in realen Quantensystemen nur selten zu finden ist. Wenn doch, dann führt dies oft zu unerwarteten und völlig neuen Effekten, welche auch technisch von großem Nutzen sein können. Ein bekanntes Beispiel dafür ist die Supraleitung, bei der bestimmte Stoffe auf extrem tiefe Temperaturen gekühlt werden, sodass sich Elektronen in Paaren ohne Widerstand durch den Leiter bewegen können.

Den Forschern der Universität Hamburg gelang es nun, Atome des Isotops 40Kalium mit Laserlicht fast bis auf den absoluten Nullpunkt (minus 273° C) abzukühlen und sie dadurch zu verlangsamen. Bei diesen Temperaturen bilden die Teilchen einen Quantenzustand, der im Fachjargon als „Fermisee“ bezeichnet wird – nach Enrico Fermi, einem Pionier der Quantenmechanik. Erst seit einigen Jahren ist es technisch überhaupt möglich, in diesen Temperaturbereich vorzustoßen.

„Wir hatten bereits beobachtet, dass sich bosonische Atome kollektiv verhalten“, berichtet Klaus Sengstock, experimenteller Leiter des Teams. „Es war aber eine völlig offene Frage, was in diesem Fall mit Fermionen passieren würde.“ Nach dem Abkühlen manipulierten die Forscher die Fermionen durch Laserlicht und richteten dadurch den Spin aus. Erstmals wurde beobachtet, wie der Spin aller Fermionen im Gleichtakt zu schwingen beginnt – ähnlich einem Wiener Walzer, bei dem sich alle Paare auf der Tanzfläche genau mit der gleichen Geschwindigkeit drehen.

Gemeinsam mit Kollegen aus Dresden und Barcelona konnte das Phänomen experimentell und theoretisch genau ergründet werden. „Alle Atome sind miteinander verknüpft, deswegen das überraschend kollektive Verhalten“, erklärt Prof. Maciej Lewenstein aus Barcelona, der das Theorieteam leitet. „Für solch komplexe Systeme gibt es keine einfache Formel. Wir mussten eine neue effektive Theorie ausarbeiten, um das Experiment korrekt beschreiben zu können.“ Die Forscher fanden zudem heraus, dass das kollektive Verhalten ein Quantenphänomen ist, das sehr sensitiv auf Störungen wie etwa Temperaturveränderungen reagiert.

Die Ergebnisse der Grundlagenforschung erweitern das Verständnis von physikalischen Vielteilchensystemen und damit von fundamentalen Aspekten der Natur. Anwendungen könnten im Bereich der Quantentechnologien liegen, etwa in Form von Quantensensoren oder in der Quanteninformationstechnologie.

Science 10 January 2014: Krauser et al., vol. 343 no. 6167 pp. 157-160
'Giant spin oscillations in an ultracold Fermi sea': https://www.sciencemag.org/content/343/6167/157.full
Für Rückfragen:
Prof. Dr. Klaus Sengstock
Universität Hamburg
Institut für Laserphysik
Tel.: 040/8998-5201
E-Mail: sengstock@physik.uni-hamburg.de
Dr. Christoph Becker
Universität Hamburg
Institut für Laserphysik
Tel.: 040/8998-5203
E-Mail: cbecker@physnet.uni-hamburg.de

Birgit Kruse | idw
Weitere Informationen:
http://www.uni-hamburg.de/presse/pressemitteilungen/2014/pm1.html

Weitere Berichte zu: Atom Bosonen Elektron Fermionen Laserlicht Quantensystem Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics