Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Können wir Schwarze Löcher voneinander unterscheiden?

17.04.2018

Astrophysiker in Frankfurt, am Max-Planck-Institut für Radioastronomie in Bonn und in Nijmegen, die im Rahmen des Projekts “BlackHoleCam” zusammenarbeiten, beantworten diese Frage durch die erstmalige Berechnung von Bildern Schwarzer Löcher aufgrund alternativer, nicht-Einsteinscher Gravitationstheorien. Zurzeit ist es noch schwierig, diese von klassischen Schwarzen Löchern aufgrund der allgemeinen Relativitätstheorie zu unterscheiden.

Eine der fundamentalsten Vorhersagen von Einsteins Allgemeiner Relativitätstheorie ist die Existenz von Schwarzen Löchern. Doch trotz der erst kürzlich gelungenen Entdeckung der Gravitationswellen binärer Schwarzer Löcher am LIGO-Experiment steht ein direkter Nachweis mit Radioteleskopen noch aus.


Simulationen der Schattenbilder von Sgr A* , berechnet für ein Schwarzes Loch des “Kerr”-Typs (ART, obere Reihe), und des “Dilaton”-Typs (alternative Schwerkrafttheorie, untere Reihe).

Fromm/Younsi/Mizuno/Rezzolla (Frankfurt)

Zum ersten Mal haben nun Astrophysiker der Goethe-Universität Frankfurt, des Max-Planck-Instituts für Radioastronomie in Bonn und der Universität Nijmegen im Rahmen des vom Europäischen Forschungsrat geförderten Projekts „BlackHoleCam“ realistische „Schattenbilder“ von Sagittarius A* (Sgr A*) erstellt, dem Kandidaten für ein supermassereiches Schwarzen Lochs im Zentrum unserer Milchstraße.

Sie wollen damit nicht nur prüfen, ob Schwarze Löcher existieren, sondern auch, ob sich Schwarzen Löcher im Rahmen von Einsteins Allgemeiner Relativitätstheorie von denjenigen unterscheiden lassen, die in alternativen Schwerkrafttheorien auftreten.

Materie, die in den „Ereignishorizont“ am Rande eines Schwarzen Lochs gerät, wird endgültig verschluckt und ist nicht mehr nachweisbar. Doch einige der Lichtteilchen (Photonen), welche die Materie als letzte Signale aussendet, können entkommen und von fernen Beobachtern registriert werden. Die Größe und Form des dadurch erzeugten Schattens hängt dabei von den Eigenschaften des Schwarzen Lochs und der in die Rechnung eingehenden Gravititationstheorie ab.

Da die größten Abweichungen von Einsteins Relativitätstheorie sehr nahe am Ereignishorizont erwartet werden, und da alternative Gravitationstheorien unterschiedliche Vorhersagen über die Eigenschaften des Schattens treffen, sind direkte Beobachtungen von Sgr A* ein vielversprechender Ansatz, die Auswirkung der Gravitation unter den extremsten Bedingungen zu testen.

Solche Bilder vom Schatten eines Schwarzen Lochs zu erzeugen, ist das oberste Ziel der internationalen „Event Horizon Telescope“-Kollaboration (EHTC), die Radiodaten von Teleskopen aus der ganzen Welt kombiniert und so ein Riesenteleskop von nahezu Erddurchmesser simuliert.

Wissenschaftler aus dem „BlackHoleCam“-Team in Europa, die der EHT-Kollaboration angehören, sind nun einen Schritt weiter gegangen und haben untersucht, ob es möglich ist, zwischen verschiedenen Typen von Schwarzen Löchern zu unterscheiden, die von unterschiedlichen Gravitationstheorien vorhergesagt werden. In Einsteins Theorie ist das der sogenannte „Kerr“-Typ, während der „Dilaton“-Typ die repräsentative Lösung einer anderen Gravitationstheorie darstellt.

Die Forscher untersuchten was passiert, wenn Materie auf diese zwei sehr unterschiedlichen Arten von Schwarzen Löchern fällt und berechneten die entstehende Strahlung als Grundlage, um die Bilder zu erzeugen. „Zur Erfassung der Effekte verschiedener Schwarzer Löcher benutzten wir realistische Simulationen von Akkretionsscheiben mit fast identischen Ausgangsbedingungen. Diese kostspieligen numerischen Simulationen benötigten hochmoderne Rechencodes und beanspruchten mehrere Monate Rechenzeit auf dem LOEWE-CSC-Supercomputer unseres Instituts“, sagt Erstautor Dr. Yosuke Mizuno.

Die erwarteten Radiobilder werden von Natur aus eine begrenzte Auflösung und Bildgenauigkeit haben. Als die Wissenschaftler ihren Rechnungen realistische Bildauflösungen zugrunde legten, fanden sie zu ihrem Erstaunen heraus, dass selbst Schwarze Löcher, die sich in ihren Eigenschaften stark von klassischen Schwarzen Löchern im Einstein’schen Sinne unterscheiden, sich in den simulierten Erscheinungsbildern kaum noch voneinander unterscheiden lassen.

“Unsere Ergebnisse legen nahe, dass man in manchen Gravitationstheorien, Schwarze Löcher ähnlich aussehen können, wie die in der Relativitätstheorie. Vermutlich brauchen wir neue Datenanalysemethoden für das EHT, um diese auseinander zu halten.“, sagt Luciano Rezzolla, Professor der Goethe-Universität und Leiter des Frankfurter Teams. „Wir müssen offen dafür sein, dass zu Einstein das letzte Wort noch nicht gesprochen ist. Glücklicherweise werden zukünftige Beobachtungen und fortgeschrittene Technologien diese Zweifel ausräumen können“, ist seine Schlussfolgerung.

„Tatsächlich werden unabhängige Informationen, beispielsweise von Pulsaren, die das zentrale Schwarze Loch umlaufen und nach denen wir intensiv suchen, uns dabei helfen, diese Mehrdeutigkeit zu klären“, sagt Michael Kramer, Direktor am Max-Planck-Institut für Radioastronomie in Bonn. Heino Falcke, Professor an der niederländischen Radboud-Universität, ist optimistisch. „Es gibt keine Zweifel, dass das EHT letztlich starke Beweise für den Schatten des Schwarzen Lochs liefern wird. Diese Ergebnisse hier fordern uns heraus, die Techniken noch weiter zu entwickeln und schärfere Bilder zu erzeugen.“ Falcke hat vor fast 20 Jahren als erster vorgeschlagen, Radioteleskope zu benutzen, um die Schatten von Schwarzen Löchern abzubilden.

BlackHoleCam ist ein ERC-finanziertes Synergie-Projekt, um astrophysikalische Schwarze Löcher vermessen und verstehen zu können. Die Projektleiter Falcke, Kramer und Rezzolla testen die grundlegenden Vorhersagen von Einsteins Allgemeiner Relativitätstheorie. Die Teammitglieder des BlackHoleCam-Projekts sind aktive Partner der globalen Event Horizon Telescope Collaboration (EHTC). Die Goethe-Universität ist als Anteilshalter im Vorstand der EHTC vertreten.

Autorenliste mit Instituten:

Yosuke Mizuno1, Ziri Younsi1, Christian M. Fromm1, , Oliver Porth1, Mariafelicia De Laurentis1, Hector Olivares1, Heino Falcke2, Michael Kramer3 and Luciano Rezzolla1,4

(1) Institut für Theoretische Physik, Goethe-Universität, Frankfurt; (2) Radboud-Universität, Nijmegen, Niederlande; (3) Max-Planck-Institut für Radioastronomie, Bonn; (4) Frankfurt Institute for Advanced Studies (FIAS)

Kontaktdaten der Wissenschaftler:

Yosuke Mizuno: Mobil: +49 159 02104299, Institut: +49 69 79847885
Heino Falcke: Mobil: +49 151 23040365, Institut: +31 24 3652020
Michael Kramer: Mobil: +49 160 90747348, Institut: +49 228 525278
Luciano Rezzolla: Mobil: +49 170 3022982, Institut: +49 69 79847871

Lokaler Kontakt:

Prof. Dr. Michael Kramer,
Direktor und Leiter der Forschungsabteilung „Radioastronomische Fundamentalphysik“
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-278
E-mail: mkramer@mpifr-bonn.mpg.de

Prof. Dr. Eduardo Ros,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-125
E-mail: ros@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49 228 525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

https://www.mpifr-bonn.mpg.de/pressemeldungen/2018/5

Norbert Junkes | Max-Planck-Institut für Radioastronomie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erste Beweise für Quelle extragalaktischer Teilchen
13.07.2018 | Technische Universität München

nachricht MAGIC-Teleskope finden Entstehungsort von seltenem kosmischen Neutrino
13.07.2018 | Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungsnachrichten

Maschinelles Lernen: Neue Methode ermöglicht genaue Extrapolation

13.07.2018 | Informationstechnologie

Fachhochschule Südwestfalen entwickelt innovative Zinklamellenbeschichtung

13.07.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics