Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kieler Physiker können Verhalten von Elektronen bei extremen Bedingungen erstmals exakt beschreiben

02.10.2017

Elektronen sind ein elementarer Bestandteil unserer Welt: Sie umgeben den Kern aller Atome, sind essentiell zur Bildung von Molekülen und bestimmen maßgeblich die Eigenschaften von Festkörpern und Flüssigkeiten. Ohne sie als Ladungsträger des elektrischen Stroms wäre unsere hochtechnisierte Umgebung mit Smartphones, Computern und selbst der klassischen Glühbirne nicht denkbar.

Trotz ihrer Allgegenwärtigkeit ließ sich das Verhalten von miteinander wechselwirkenden Elektronen bisher nicht exakt beschreiben. Vor allem bei extremen Dichten wie im Inneren von Planeten oder in Sternen kamen bisher lediglich Näherungsmodelle zum Einsatz.


In der Natur kommt die warme dichte Materie des Elektronengases unter anderem im Inneren von Planeten vor wie hier im Jupiter. Auf der Erde lässt sie sich nur im Labor herstellen zum Beispiel mit einem freien Elektronen-Laser wie am XFEL bei Hamburg.

Foto: NASA/JPL-Caltech/SwRI/MSSS/Gabriel Fiset


Die Kieler Physiker Tobias Dornheim, Simon Groth und Professor Michael Bonitz haben ein Simulationsverfahren entwickelt, mit dem sie die Eigenschaften von Elektronen bei endlichen Temperaturen erstmals exakt berechnen können.

Foto: Julia Siekmann

Um genau solchen Bedingungen geht es einem Forschungsteam von Physikern der Christian-Albrechts-Universität zu Kiel (CAU). In Zusammenarbeit mit Kollegen aus den USA und Großbritannien ist es ihnen gelungen, das Verhalten von Elektronen unter diesen extremen Bedingungen durch exakte Simulationen zu beschreiben. Damit lösen die Wissenschaftler ein Problem, das die Physik seit Jahrzehnten beschäftigt. Ihre Erkenntnisse sind in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters erschienen.

Wie sich Elektronen „im Großen“ verhalten, lässt sich oft einfach beschreiben, zum Beispiel der Zusammenhang zwischen elektrischer Spannung, Widerstand und Stromstärke. Auf mikroskopischer Ebene unterliegt ihr Verhalten jedoch den Gesetzen der Quantenmechanik, was das Lösen komplizierter mathematischer Gleichungen erfordert.

Von besonderer physikalischer Bedeutung ist in diesem Zusammenhang das sogenannte homogene Elektronengas. Hierbei handelt es sich nicht um ein Gas im eigentlichen Sinne, sondern um ein Modell, das wichtige Eigenschaften von Elektronen beschreibt.

Es ist unter anderem wichtig, um Phänomene wie die Supraleitung, also eine elektrische Leitung ohne Widerstand, oder Leitungselektronen in Festkörpern zu verstehen. Außerdem bildet das Modell die Grundlage für die sogenannte Dichtefunktionaltheorie. Sie ist die derzeit meist verbreitete Simulationsmethode in der Physik und der Chemie und wird auch zur Untersuchung von Materialeigenschaften in der Wirtschaft eingesetzt.

Simulationen des Elektronengases waren in der Vergangenheit auf Elektronen im Bereich tiefer Temperaturen beschränkt. In jüngster Zeit wächst jedoch das Interesse an Materie unter extremen Bedingungen – zehntausendmal wärmer als die Raumtemperatur und bis zu hundertmal dichter als gewöhnliche Festkörper.

„Das Verhalten von Elektronen bei endlichen Temperaturen akkurat zu beschreiben, ist ein bisher ungelöstes Problem, das seit Jahrzehnten im Fokus der Wissenschaft steht“, sagt Michael Bonitz, Professor für Theoretische Physik und Leiter des Kieler Forschungsteams. In der Natur kommt diese „warme dichte Materie“ unter anderem im Inneren von Planeten vor sowie im Erdkern.

Im Labor kann sie experimentell erzeugt werden, wenn zum Beispiel ein Festkörper mit einem Hochintensitätslaser oder einem freien Elektronen-Laser wie dem European XFEL bei Hamburg beschossen wird. Warme dichte Materie ist außerdem relevant für die Trägheitsfusion, die zukünftig eine nahezu unbegrenzte Quelle sauberer Energie darstellen könnte.

Um das Verhalten von Elektronen im Bereich der warmen dichten Materie zu beschreiben, kombinierten die Kieler Physiker neue Simulationsverfahren, die an der CAU entwickelt wurden. Frühere Ergebnisse basierten auf verschiedenen Modellen, die zum Teil schwer nachprüfbare Näherungen enthielten. Mithilfe aufwendiger Computersimulationen konnten die Kieler Physiker die komplexen Gleichungen des Elektronengases jetzt jedoch exakt lösen.

In Zusammenarbeit mit Kollegen vom Los Alamos National Laboratory (USA) und dem Imperial College London gelang den Forschern damit die erste vollständige und finale Beschreibung der thermodynamischen Eigenschaften wechselwirkender Elektronen im Bereich der warmen dichten Materie. “Diese Ergebnisse sind die ersten exakten Daten in diesem Bereich und werden unser Verständnis von Materie bei endlicher Temperatur auf eine neue Stufe heben“, erklärt Bonitz.

„Unter anderem können nun erstmals die teils seit 40 Jahren existierenden Modelle überprüft werden. Wir konnten bereits Abweichungen von 10 bis 15 Prozent nachweisen.“ Am Ende ihrer jahrelangen Arbeit stehen jetzt also konkrete Zahlen und Formeln, die wichtig für den Vergleich mit Experimenten sind. Sie werden Eingang in weiterführende Theorien finden und damit auch andere Wissenschaftlerinnen und Wissenschaftler in ihren Forschungen weiterbringen, so hoffen die Kieler. 

Original-Publikation:

Ab initio Exchange-Correlation Free Energy of the Uniform Electron Gas at Warm Dense Matter Conditions, Simon Groth, Tobias Dornheim, Travis Sjostrom, Fionn D. Malone, W.M.C. Foulkes, and Michael Bonitz

Physical Review Letters 119, 135001, DOI: 10.1103/PhysRevLett.119.135001, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.119.135001

Es stehen Fotos zum Download bereit:

www.uni-kiel.de/download/pm/2017/2017-293-1.jpg

Bildunterschrift: Die Kieler Physiker Tobias Dornheim, Simon Groth und Professor Michael Bonitz haben ein Simulationsverfahren entwickelt, mit dem sie die Eigenschaften von Elektronen bei endlichen Temperaturen erstmals exakt berechnen können.

Foto: Julia Siekmann

www.uni-kiel.de/download/pm/2017/2017-293-2.jpg

Bildunterschrift: In der Natur kommt die warme dichte Materie des Elektronengases unter anderem im Inneren von Planeten vor wie hier im Jupiter. Auf der Erde lässt sie sich nur im Labor herstellen zum Beispiel mit einem freien Elektronen-Laser wie am XFEL bei Hamburg.

Foto: NASA/JPL-Caltech/SwRI/MSSS/Gabriel Fiset

Kontakt:

Professor Michael Bonitz

Institut für Theoretische Physik und Astrophysik,

Universität Kiel

Tel.: 0431-880-4122

E-Mail: bonitz@theo-physik.uni-kiel.de

Web: www.theo-physik.uni-kiel.de/~bonitz

Details, die nur Millionstel Millimeter groß sind: Damit beschäftigt sich der Forschungsschwerpunkt „Nanowissenschaften und Oberflächenforschung“ (Kiel Nano, Surface and Interface Science – KiNSIS) an der Christian-Albrechts-Universität zu Kiel (CAU). Im Nanokosmos herrschen andere, nämlich quantenphysikalische Gesetze als in der makroskopischen Welt. Durch eine intensive interdisziplinäre Zusammenarbeit zwischen Materialwissenschaft, Chemie, Physik, Biologie, Elektrotechnik, Informatik, Lebensmitteltechnologie und verschiedenen medizinischen Fächern zielt der Schwerpunkt darauf ab, die Systeme in dieser Dimension zu verstehen und die Erkenntnisse anwendungsbezogen umzusetzen. Molekulare Maschinen, neuartige Sensoren, bionische Materialien, Quantencomputer, fortschrittliche Therapien und vieles mehr können daraus entstehen. Mehr Informationen auf www.kinsis.uni-kiel.de.

Christian-Albrechts-Universität zu Kiel

Presse, Kommunikation und Marketing, Dr. Boris Pawlowski

Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355

E-Mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de, Twitter: www.twitter.com/kieluni Facebook: www.facebook.com/kieluni, Instagram: instagram.com/kieluni

Link zur Pressemeldung (deutsch): www.uni-kiel.de/pressemeldungen/index.php?pmid=2017-293-elektronen

Link zur Pressemeldung (englisch): www.uni-kiel.de/pressemeldungen/index.php?pmid=2017-293-elektronen&lang=en

Professor Michael Bonitz | Universität Kiel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Für Körperscanner und Materialprüfung: Neues bildgebendes Verfahren für Terahertz-Strahlung setzt auf Mikrospiegel
06.12.2019 | Technische Universität Kaiserslautern

nachricht Schweizer Weltraumteleskop CHEOPS: Raketenstart voraussichtlich am 17. Dezember 2019
05.12.2019 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Das 136 Millionen Atom-Modell: Wissenschaftler simulieren Photosynthese

Die Umwandlung von Sonnenlicht in chemische Energie ist für das Leben unerlässlich. In einer der größten Simulationen eines Biosystems weltweit haben Wissenschaftlerinnen und Wissenschaftler diesen komplexen Prozess an einem Bestandteil eines Bakteriums nachgeahmt – am Computer, Atom um Atom. Die Arbeit, die jetzt in der renommierten Fachzeitschrift „Cell“ veröffentlicht wurde, ist ein wichtiger Schritt zum besseren Verständnis der Photosynthese in einigen biologischen Strukturen. An der internationalen Forschungskooperation unter Leitung der University of Illinois war auch ein Team der Jacobs University Bremen beteiligt.

Das Projekt geht zurück auf eine Initiative des inzwischen verstorbenen, deutsch-US-amerikanischen Physikprofessors Klaus Schulten von der University of...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: Freiformflächen bis zu 80 Prozent schneller schlichten: Neue Werkzeuge und Algorithmen für die Fräsbearbeitung

Beim Schlichtfräsen komplexer Freiformflächen können Kreissegment- oder Tonnenfräswerkzeuge jetzt ihre Vorteile gegenüber herkömmlichen Werkzeugen mit Kugelkopf besser ausspielen: Das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen entwickelte im Forschungsprojekt »FlexiMILL« gemeinsam mit vier Industriepartnern passende flexible Bearbeitungsstrategien und implementierte diese in eine CAM-Software. Auf diese Weise lassen sich große frei geformte Oberflächen nun bis zu 80 Prozent schneller bearbeiten.

Ziel im Projekt »FlexiMILL« war es, für die Bearbeitung mit Tonnenfräswerkzeugen nicht nur neue, verbesserte Werkzeuggeometrien zu entwickeln, sondern auch...

Im Focus: Bis zu 30 Prozent mehr Kapazität für Lithium-Ionen-Akkus

Durch Untersuchungen struktureller Veränderungen während der Synthese von Kathodenmaterialen für zukünftige Hochenergie-Lithium-Ionen-Akkus haben Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und kooperierender Einrichtungen neue und wesentliche Erkenntnisse über Degradationsmechanismen gewonnen. Diese könnten zur Entwicklung von Akkus mit deutlich erhöhter Kapazität beitragen, die etwa bei Elektrofahrzeugen eine größere Reichweite möglich machen. Über die Ergebnisse berichtet das Team in der Zeitschrift Nature Communications. (DOI 10.1038/s41467-019-13240-z)

Ein Durchbruch der Elektromobilität wird bislang unter anderem durch ungenügende Reichweiten der Fahrzeuge behindert. Helfen könnten Lithium-Ionen-Akkus mit...

Im Focus: Neue Klimadaten dank kompaktem Alexandritlaser

Höhere Atmosphärenschichten werden für Klimaforscher immer interessanter. Bereiche oberhalb von 40 km sind allerdings nur mit Höhenforschungsraketen direkt zugänglich. Ein LIDAR-System (Light Detection and Ranging) mit einem diodengepumpten Alexandritlaser schafft jetzt neue Möglichkeiten. Wissenschaftler des Leibniz-Instituts für Atmosphärenphysik (IAP) und des Fraunhofer-Instituts für Lasertechnik ILT entwickeln ein System, das leicht zu transportieren ist und autark arbeitet. Damit kann in Zukunft ein LIDAR-Netzwerk kontinuierlich und weiträumig Daten aus der Atmosphäre liefern.

Der Klimawandel ist in diesen Tagen ein heißes Thema. Eine wichtige wissenschaftliche Grundlage zum Verständnis der Phänomene sind valide Modelle zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

Intelligente Transportbehälter als Basis für neue Services der Intralogistik

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

RNA-Modifikation - Umbau unter Druck

06.12.2019 | Biowissenschaften Chemie

Der Versteppung vorbeugen

06.12.2019 | Geowissenschaften

Verstopfung in Abwehrzellen löst Entzündung aus

06.12.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics