Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kieler Forscher beeinflussen Magnetwiderstand zweiatomiger Bleimoleküle

29.06.2018

Mehr Kontrolle über den physikalischen Effekt könnte künftig die Datenspeicherung verbessern

Die moderne Speichertechnologie mit immer kleineren und leistungsfähigeren Festplatten kommt ohne sie nicht aus: Die Effekte des sogenannten Magnetwiderstands sorgen dafür, dass die auf Festplatten magnetisch gespeicherten Daten elektrisch ausgelesen werden können.


Mit der Spitze des Rastertunnelmikroskops lassen sich Bleiatome (orange) auf einer Eisenoberfläche (blau) mit verschiedenen Magnetisierungsrichtungen verschieben.

© AG Berndt


Experimente mit Molekülen aus zwei Bleiatomen (rot) zeigten, dass der Magnetwiderstand stark davon abhängt, wie sich die Achse (L) der Bleimoleküle und die Spinrichtung (S) zueinander orientieren.

© Weismann

Dabei führt bereits eine schwache Änderung des Magnetfelds zu einer verhältnismäßig großen Anpassung des elektrischen Widerstandes eines Materials. Für die Entdeckung eines dieser Effekte wurde 2007 der Physik-Nobelpreis vergeben. Mittlerweile werden sie standardmäßig in Festplatten-Leseköpfen oder in der Automobilsensorik angewendet. Physiker der Christian-Albrechts-Universität zu Kiel (CAU) beschäftigen sich mit dem verwandten Effekt des sogenannten anisotropen, richtungsabhängigen, Tunnelmagnetwiderstand.

Sie konnten nun zeigen, wie sich dieser Effekt auf atomarer Skala beeinflussen lässt. Ihre Ergebnisse veröffentlichten sie in der Fachzeitschrift Physical Review B Rapid Communications. Langfristig könnte er für ein neues Prinzip in der Datenspeicherung genutzt werden, sogenannte MRAM-Speicher (Magnetoresistive Random Access Memory).

Diese Arbeitsspeicher versprechen eine hohe Datendichte und lassen sich schnell und ohne hohen Energieverbrauch auslesen. Im Gegensatz zu herkömmlichen halbleiterbasierten RAMs speichern sie Daten in einem nichtflüchtigen Zustand. Informationen werden auch bei abgeschaltetem Computer weiter gespeichert und sind nach dem Einschalten sofort verfügbar.

Um immer größere Datenmengen von immer kleineren Festplatten abrufen zu können, sind leistungsfähige Leseköpfe unverzichtbar. Informationen sind auf Festplatten in Form kleiner Bereiche mit verschiedenen Ausrichtungen der Magnetisierung gespeichert.

Diese Unterschiede im Magnetfeld wandelt der Lesekopf in verschiedene Widerstände um, die sich elektronisch leicht verarbeiten lassen. Um eine Widerstandsänderung zu erkennen und Informationen auszulesen, ist im Falle des Tunnelmagnetwiderstands neben der elektrischen Ladung der fließenden Elektronen auch ihre zweite Eigenschaft, der Spin, entscheidend.

Das Kieler Forschungsteam hat hingegen den anisotropen Tunnelmagnetwiderstands untersucht. Anisotrop bedeutet, dass die Widerstandsänderung von der Richtung des Stroms relativ zur Magnetisierung abhängt. Dieser Effekt kommt ohne die Spineigenschaft aus und kann so Bauelemente für die Speichertechnologie vereinfachen. Das Experiment der Kieler Wissenschaftler zeigt, dass sich damit auch auf molekularen Strukturen gespeicherte magnetische Informationen auslesen lassen könnten.

Atome verschieben im Rastertunnelmikroskop

Für ihr Experiment nutzte das Kieler Forschungsteam um Professor Richard Berndt ein Rastertunnelmikroskop (RTM). Damit lässt sich die geometrische Struktur metallischer Oberflächen bis auf Skala einzelner Atome untersuchen und zum Beispiel die Änderung des elektrischen Widerstands messen. Außerdem lässt sich mit seiner feinen Spitze die Struktur Atom-für-Atom manipulieren und so die physikalischen Eigenschaften eines Materials gezielt ändern. Gewissermaßen „handgemachte“ Moleküle können damit maßgeschneidert hergestellt werden.

Mit dem RTM stellten die Kieler Physiker aus zwei Bleiatomen ein Molekül her, ein sogenanntes Bleidimer, um den schwachen Effekt des anisotropen Magnetwiderstands zu verstärken. Denn Blei besitzt aufgrund seiner hohen Kernladungszahl eine verhältnismäßig große quantenmechanische Spin-Bahn-Wechselwirkung.

Das heißt, die räumliche Anordnung der Bleiatome beeinflusst die magnetischen Eigenschaften des Materials besonders stark. In einem zweiten Schritt gelang es den Wissenschaftlern, mit dem RTM das Bleidimer auf eine Eisenoberfläche mit verschiedenen magnetischen Richtungen aufzubringen. „Blei ist selbst nicht magnetisch und lässt sich auf magnetischen Oberflächen gut bewegen“, erklärt Erstautor Dr. Johannes Schöneberg aus Berndts Arbeitsgruppe die Idee ihres Experiments. So konnten sie Bleidimere auf magnetisch unterschiedlichen Bereichen der Oberfläche und in verschiedenen Orientierungen positionieren.

Mit Bleiatomen magnetische Wechselwirkungen beeinflussen

In ihrem Experiment untersuchen die Forscher, wie sich der elektrische Widerstand in den verschiedenen Bereichen und Orientierungen jeweils ändert. Sie beobachteten je nach Ausrichtung des Dimers sowohl einen sehr starken als auch einen verschwindend geringen Magnetwiderstand. Um diese Ergebnisse zu verstehen, führte Dr. Paolo Ferriani aus der Arbeitsgruppe von Professor Stefan Heinze numerische, quantenmechanische Berechnungen auf den Supercomputern des Norddeutschen Verbunds für Hoch- und Höchstleistungsrechnen (HLRN) durch. „Damit konnten wir zeigen, dass die Widerstandsänderung stark davon abhängt, wie die Achse des Dimers und seine Spinrichtung zueinander orientiert sind“, so Ferriani.

Für einen gezielten Einsatz im neuen Forschungsgebiet der Spinelektronik sind die untersuchten Bleidimere jedoch noch nicht geeignet. Ihre Experimente mussten die Kieler Physiker unter besonderen Voraussetzungen bei -269°C durchführen, da die Dimere bei Raumtemperatur nicht stabil sind. Ihre Arbeiten unter Laborbedingungen zeigen aber, dass „handgemachte“ Strukturen auf atomarer Skala ein großes Potential haben, um Magnetwiderstände zu kontrollieren.

Die Arbeit wurde unterstützt durch die Sonderforschungsbereiche 677 „Funktion durch Schalten“ der CAU und 668 „Magnetismus: Vom Einzelatom zur Nanostruktur“ der Universität Hamburg.

Originalveröffentlichung:
Tunneling anisotropic magnetoresistance via molecular π orbitals of Pb dimers, Johannes Schöneberg, Paolo Ferriani, Stefan Heinze, Alexander Weismann und Richard Berndt, Physical Review B (Rapid Communications & Editors’ Suggestion) 97, 041114 (2018).
https://journals.aps.org/prb/pdf/10.1103/PhysRevB.97.041114

Hintergrundinformation:
Der Spin der Elektronen, der mit einem magnetischen Moment verknüpft ist und in magnetischen Materialien zur Ausbildung „atomarer Stabmagnete“ (atomarer Spins) führt, eignet sich dazu, Informationen zu verarbeiten und zu kodieren. Durch seine gezielte Manipulation könnte man schnellere, energiesparsamere und leistungsfähigere Bauelemente für die Informationstechnologie schaffen. Damit beschäftigt sich das Forschungsgebiet der Spinelektronik, auch Spintronik genannt.

https://www.uni-kiel.de/fileadmin/user_upload/pressemitteilungen/2018/215-Magnet...
Bildunterschrift: Dank des physikalischen Effekts des Magnetwiderstands können magnetisch auf Festplatten gespeicherte Daten elektrisch ausgelesen werden.
Foto: Pixabay, CC0 Creative Commomns

https://www.uni-kiel.de/fileadmin/user_upload/pressemitteilungen/2018/215-Magnet...
Bildunterschrift: Mit der Spitze des Rastertunnelmikroskops lassen sich Bleiatome (orange) auf einer Eisenoberfläche (blau) mit verschiedenen Magnetisierungsrichtungen verschieben.
Abbildung: AG Berndt

https://www.uni-kiel.de/fileadmin/user_upload/pressemitteilungen/2018/215-Magnet...
Bildunterschrift: Die Experimente der Kieler Physiker mit Molekülen aus zwei Bleiatomen (rot) zeigten, dass der Magnetwiderstand, also die Änderung des elektrischen Widerstandes eines Materials bei Änderung der Magnetisierungsrichtung, stark davon abhängt, wie sich die Achse (L) der Bleimoleküle und die Spinrichtung (S) zueinander orientieren.
Abbildung: Weismann

Weitere Informationen:

https://www.uni-kiel.de/de/detailansicht/news/kieler-forscher-beeinflussen-magne...

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics