Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kein Geheimnis mehr: die grundlegende Verknüpfung von Information und Wärme

13.03.2012
Physiker aus Augsburg, Lyon und Kaiserslautern zeigen in Nature die ultimative Grenze für numerisches Rechnen und irreversibles Löschen von Information.

In der jüngsten Ausgabe der renommierten Fachzeitschrift Nature zeigen Physiker aus Augsburg, Lyon und Kaiserslautern, wie sie das Landauer-Prinzip erstmals experimentell belegen konnten. Vor mehr als fünfzig Jahren formulierte Rolf Landauer von IBM die Hypothese, dass durch das Löschen von Information zwangsläufig eine minimale Energie in Form von Wärme an die Umgebung abgegeben wird und dass diese Wärme nach unten beschränkt ist.

Ihr Grenzwert wird durch die Menge der gelöschten Information und die Temperatur der Umgebung bestimmt. Durch diese Hypothese etablierte Landauer eine fundamentale Beziehung zwischen Informationstheorie und Thermodynamik. Mit ihrem Experiment bestätigen Dr. Eric Lutz (Universität Augsburg) und seine Kollegen nun Landauers Vorhersagen und beweisen, dass die untere Grenze, auf die die Wärme beschränkt ist, tatsächlich erreicht werden kann.

Die Verifikation des Landauer-Prinzips ist insoweit von großer Bedeutung, als durch sie die scheinbare Verletzung des zweiten Hauptsatzes der Thermodynamik durch den sogenannten Maxwellschen Dämon aufgehoben wird. Dieser Maxwellsche Dämon ist in der Lage, nach Beobachtung - also nach Informationsgewinn - kalte von warmen Molekülen in einer geteilten Kammer von einander zu trennen. Laut Maxwells Gedankenexperiment würde der Dämon mit Hilfe des bei diesem Informationsgewinn entstehenden Temperaturunterschieds Arbeit produzieren können, ohne dass er selbst Arbeit verrichtet. Dies freilich stünde im klaren Widerspruch zum zweiten Hauptsatz der Thermodynamik. Nach einem vollen Zyklus muss aber der Dämon die gewonnene Information wieder löschen und dabei Wärme dissipieren. Da gemäß dem Landauer-Prinzip die dissipierte Wärme immer größer als die gewonnene Arbeit ist, wird somit der zweite Hauptsatz nicht verletzt.

Die Ergebnisse der Forscher um Dr. Eric Lutz sind nicht nur von theoretischer, sondern auch von praktischer Relevanz. In der Computerindustrie geht aktuell der Trend zu immer kleineren Mikrochips. Die Wärmeproduktion in diesen immer kleiner werdenden Chips wird allerdings zu einem immer größeren Problem, da sie sowohl die Leistung von Rechnern einschränkt als auch deren weitere Miniaturisierung erschwert. Gegenwärtig liegt die dissipierte Wärme in silkonbasierten digitalen Schaltkreisen ungefähr tausendmal über der Landauer-Grenze. Es wird aber vorhergesagt, dass diese Grenze bereits in den nächsten zwanzig Jahren erreicht sein wird. Demnach werden auch Computeringenieure in Kürze mit der fundamentalen Grenze Landauers konfrontiert werden.

Im Experiment wurde von Lutz und seinen Kollegen eine Mikroglaskugel in einem Doppeltopfpotential, das mit fokussiertem Laserlicht erzeugt wird, eingefangen. Diese Versuchsanordnung entspricht dem einfachsten Zwei-Niveau-Speicher, in dem ein Bit Information gespeichert werden kann (Kugel rechts ist Zustand 0 und Kugel links Zustand 1). Die im System ursprünglich gespeicherte Information kann gelöscht werden, wenn eine Kugel kontrolliert in einen Topf gebracht wird. Bei diesem Prozess haben die Physiker die dissipierte Wärme gemessen. Dabei war zu beobachten, dass die dissipierte Wärme stets größer ist als die Landauer-Grenze und letztere erreicht wird, wenn der Löschvorgang der Information langsamer vollzogen wird.

Die Forschungsarbeiten, die zu diesen wegweisenden Ergebnissen führten, wurden von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Emmy-Noether-Programms und und des SFB/Transregio 49 sowie durch das Exzellenzcluster Nanosystems Initiative Munich (NIM) und durch den Deutschen Akademischen Austauschdienst (DAAD) unterstützt.

Originalbeitrag:

Experimental verification of Landauer’s principle linking information and thermodynamics. Antoine Bérut, Artak Arakelyan, Artyom Petrosyan, Sergio Ciliberto, Raoul Dillenschneider & Eric Lutz. Nature 483, 187–189. http://www.nature.com/nature/journal/v483/n7388/full/nature10872.html

Ansprechpartner:

Dr. Eric Lutz
Institut für Physik der Universität Augsburg
86135 Augsburg
Telefon +49(0)821-598-3218 oder +49(0)30-838-53038
Eric.Lutz@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.uni-augsburg.de
http://www.physik.uni-augsburg.de/%7Elutzeric/
http://www.nature.com/nature/journal/v483/n7388/full/nature10872.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Mit Diamant und Laser kleinste Magnetfelder im Gehirn messen // Quantensensorik am Fraunhofer IAF
25.09.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

nachricht Mögliche Heimatsterne für das interstellare Objekt 'Oumuamua'
25.09.2018 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kupfer-Aluminium-Superatom

Äußerlich sieht der Cluster aus 55 Kupfer- und Aluminiumatomen aus wie ein Kristall, chemisch hat er jedoch die Eigenschaften eines Atoms. Das hetero-metallische Superatom, das Chemikerinnen und Chemiker der Technischen Universität München (TUM) hergestellt haben, schafft die Voraussetzung für die Entwicklung neuer, kostengünstiger Katalysatoren.

Chemie kann teuer sein. Zum Reinigen von Abgasen beispielsweise benutzt man Platin. Das Edelmetall dient als Katalysator, der chemische Reaktionen...

Im Focus: Hygiene im Handumdrehen – mit neuem Netzwerk „CleanHand“

Das Fraunhofer FEP beschäftigt sich seit Jahrzehnten mit der Entwicklung von Prozessen und Anlagen zur Reinigung, Sterilisation und Oberflächenmodifizierung. Zur Bündelung der Kompetenzen vieler Partner wurde im Mai 2018 das Netzwerk „CleanHand“ zur Entwicklung von Systemen und Technologien für saubere Oberflächen, Materialien und Gegenstände ins Leben gerufen. Als Partner von „CleanHand“ präsentiert das Fraunhofer FEP im Rahmen der Messe parts2clean, vom 23.-25. Oktober 2018, in Stuttgart, am Stand der Fraunhofer-Allianz Reinigungstechnik (Halle 5, Stand C31), das Netzwerk sowie aktuelle Forschungsschwerpunkte des Institutes im Bereich Hygiene und Reinigung.

Besonders um die Hauptreisezeiten gehen vermehrt Testberichte und Studien über die Reinheit von europäischen Raststätten, Hotelbetten und Freibädern durch die...

Im Focus: Hygiene at your fingertips with the new CleanHand Network

The Fraunhofer FEP has been involved in developing processes and equipment for cleaning, sterilization, and surface modification for decades. The CleanHand Network for development of systems and technologies to clean surfaces, materials, and objects was established in May 2018 to bundle the expertise of many partnering organizations. As a partner in the CleanHand Network, Fraunhofer FEP will present the Network and current research topics of the Institute in the field of hygiene and cleaning at the parts2clean trade fair, October 23-25, 2018 in Stuttgart, at the booth of the Fraunhofer Cleaning Technology Alliance (Hall 5, Booth C31).

Test reports and studies on the cleanliness of European motorway rest areas, hotel beds, and outdoor pools increasingly appear in the press, especially during...

Im Focus: Neue Therapien bei Gefäßerkrankungen

Auf der Jahrestagung der Deutschen Gesellschaft für Angiologie (DGA) vom 12. bis 15. September in Münster stellten Gefäßspezialisten aus ganz Deutschland die neuesten Therapien bei Gefäßerkrankungen vor. Vor allem in den Bereichen periphere arterielle Verschlusskrankheit (pAVK) und venöse Verschlusskrankheiten wie die Tiefe Venenthrombose (TVT) gibt gute Neuigkeiten für die Patienten. Viele der 720 Gefäßspezialisten, die an der Jahrestagung teilnahmen, stellten neueste Studienergebnisse vor.

Millionen Menschen leiden in Deutschland unter Gefäßerkrankungen, allein rund fünf Millionen unter der „Schaufensterkrankheit“, medizinisch periphere...

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fachkonferenz "Automatisiertes und autonomes Fahren"

25.09.2018 | Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bisher unbekannter Mechanismus der Blut-Hirn-Schranke entdeckt

25.09.2018 | Biowissenschaften Chemie

Suche nach Grundwasser im Ozean - Neues deutsch-maltesisches Forschungsprojekt gestartet

25.09.2018 | Geowissenschaften

Auf dem Weg zur Prothese der Zukunft

25.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics