Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Katalysatoren mögen’s heiß

08.10.2012
An der TU Wien konnte nun geklärt werden, wovon die nötige Betriebstemperatur von Auto-Katalysatoren abhängt.
Auto-Abgaskatalysatoren arbeiten schlecht, solange sie noch nicht aufgewärmt sind. Winzige Metallpartikel in einem Abgaskatalysator brauchen eine Mindesttemperatur, um effizient zu funktionieren. An der TU Wien konnten mit einer neuen Messmethode nun viele unterschiedliche Typen dieser Partikel gleichzeitig untersucht werden. Damit sind nun erstmals verlässliche Aussagen darüber möglich, wovon die Effizienz der Abgaskatalysatoren genau abhängt.

Niedrige Zündungs-Temperatur gesucht

„Einen großen Teil der Schadstoffemissionen verursacht ein Motor gleich nach dem Start, während der Katalysator noch kalt ist“, erklärt Prof. Günther Rupprechter vom Institut für Materialchemie der TU Wien. „Erst wenn eine bestimmte Temperatur überschritten wird, kommt es zur sogenannten katalytischen Zündung, und der Katalysator funktioniert mit hoher Effizienz.“ Um diese kritische Temperatur möglichst rasch zu erreichen, wurden bereits komplizierte und teuere Katalysator-Heizungen entwickelt. Energie- und kostensparender wäre es freilich, einen Katalysator zu bauen, der bereits bei möglichst niedrigen Temperaturen gut funktioniert.

Gerade oder schräg? Auf den Winkel kommt es an

Die kritische Temperatur, die der Katalysator erreichen muss, hängt vom verwendeten Material ab: besonders oft werden bei Abgaskatalysatoren die Edelmetalle Platin und Palladium verwendet. Wichtig ist aber auch, welche kristallographische Orientierung die Oberflächen der winzigen Metall-Körnchen haben. Kristalle kann man in unterschiedlichen ganz bestimmten Richtungen schneiden – das kennt man von geschliffenen Edelsteinen. Auch natürlich gewachsene Kristalle bilden die Oberflächen in verschiedenen Richtungen aus, und die Orientierung dieser Oberflächen bestimmt das chemische Verhalten. „Es zeigt sich, dass Oberflächen mit unterschiedlichen kristallographischen Richtungen bei unterschiedlich hohe Temperaturen für die katalytische Zündung benötigen“, erklärt Assoc. Prof. Yuri Suchorski, der mit Prof. Rupprechter zusammenarbeitet.

Viele Messungen in einem Experiment

Diesen Effekt im Detail zu untersuchen, war bisher kaum möglich: Ein Katalysator ist aus unzähligen winzigen Körnchen aufgebaut. „Bis jetzt konnte man nur die überlagerte Aktivität all dieser unterschiedlich orientierten Körnchen messen“, sagt Rupprechter. Ihm und seinem Team gelang es nun allerdings mit einem Photoemissions-Elektronenmikroskop, das auf Einsteins berühmtem „Photoeffekt“ basiert, die Zündungs-Temperaturen der einzelnen Metall-Körnchen während der laufenden Reaktion individuell zu analysieren. Verwendet wurde eine Folie, auf der viele winzige Kristalle – mit einem Durchmesser von nur etwa 100 Mikrometern – dicht nebeneinander angeordnet sind. Ihre Richtungen sind zufällig verteilt, man kann daher verschiedene Varianten von Kristallen bei einem einzigen Experiment untersuchen.

Unter dem Mikroskop wurde die Temperatur der Folie langsam erhöht – und tatsächlich zeigte sich, dass die katalytische Zündung je nach Orientierungsrichtung bei unterschiedlichen Temperaturen stattfand. „Wichtig ist für uns, unterschiedliche Kristallkörner dicht nebeneinander während eines einzigen Versuchs bei exakt gleichen Bedingungen untersuchen zu können“, erklären die Forscher. „Bei mehreren Versuchen hintereinander könnte man die äußeren Bedingungen niemals so perfekt reproduzieren, dass die einzelnen Messungen direkt vergleichbar wären.“
Mit den neuen Erkenntnissen kann man nun gezielt nach Herstellungsverfahren für Katalysatoren mit niedrigerer Zündungs-Temperatur gesucht werden. „Wir wissen nun, dass Palladium besser funktioniert als Platin, und wir wissen, welche kristallographische Richtung die niedrigste Zündungs-Temperatur verspricht“, sagt Günther Rupprechter. Nun soll es gelingen, diese Erkenntnisse auch technologisch umzusetzen, um Katalysatoren zu bauen, die im Auto nach dem Start möglichst rasch ihre Wirkung entfalten.

Originalpublikation: D. Vogel, Ch. Spiel, Y. Suchorski, A. Trinchero, R. Schlögl, Henrik Grönbeck, G. Rupprechter, “Local light-off in catalytic CO oxidation on low-index Pt and Pd surfaces: a combined PEEM, MS and DFT study”, Angewandte Chemie International Edition, 51 (2012) 10041–10044.

Rückfragehinweis:
Prof. Günther Rupprechter
Institut für Materialchemie
Getreidemarkt 9, 1060 Wien
T: +43-1-58801-165100
guenther.rupprechter@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T.: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2012/katalysatoren/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Physiker der Universität Rostock schaffen erstmals Licht, das sich wie exotische Elementarteilchen verhält
10.12.2019 | Universität Rostock

nachricht Geminiden - Die Wünsch-dir-was-Sternschnuppen vor Weihnachten
09.12.2019 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Geminiden - Die Wünsch-dir-was-Sternschnuppen vor Weihnachten

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Die Geminiden, die Mitte Dezember zu sehen sind, sind der "zuverlässigste" der großen Sternschnuppen-Ströme mit bis zu 120 Sternschnuppen pro Stunde. Leider stört in diesem Jahr der Mond zur besten Beobachtungszeit.

Sie wurden nach dem Sternbild Zwillinge benannt: Die „Geminiden“ sorgen Mitte Dezember immer für ein schönes Sternschnuppenschauspiel. In diesem Jahr sind die...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Das 136 Millionen Atom-Modell: Wissenschaftler simulieren Photosynthese

Die Umwandlung von Sonnenlicht in chemische Energie ist für das Leben unerlässlich. In einer der größten Simulationen eines Biosystems weltweit haben Wissenschaftlerinnen und Wissenschaftler diesen komplexen Prozess an einem Bestandteil eines Bakteriums nachgeahmt – am Computer, Atom um Atom. Die Arbeit, die jetzt in der renommierten Fachzeitschrift „Cell“ veröffentlicht wurde, ist ein wichtiger Schritt zum besseren Verständnis der Photosynthese in einigen biologischen Strukturen. An der internationalen Forschungskooperation unter Leitung der University of Illinois war auch ein Team der Jacobs University Bremen beteiligt.

Das Projekt geht zurück auf eine Initiative des inzwischen verstorbenen, deutsch-US-amerikanischen Physikprofessors Klaus Schulten von der University of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungsnachrichten

Was Vogelgrippe in menschlichen Zellen behindert

10.12.2019 | Biowissenschaften Chemie

Schäden im Leichtbau erkennen durch Ultraschallsensoren

10.12.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics