Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kann sich die kausale Abfolge zwischen Ereignissen in der Quantenmechanik ändern?

29.03.2018

ForscherInnen der Universität Wien und der Österreichischen Akademie der Wissenschaften stellten sich die Frage, unter welchen Bedingungen die Quantenmechanik kausale Strukturen der Welt "unscharf" werden lässt. In diesem Fall ist eine fixe Abfolge von Ereignissen nicht möglich. Dafür entwickelten die WissenschafterInnen einen neuen theoretischen Rahmen, den sie kürzlich im renommierten Fachjournal Physical Review X veröffentlichten.

Die Idee, dass Ereignisse in einer fixen kausalen Abfolge hintereinander auftreten, ist Teil unseres intuitiven Bildes der physikalischen Welt. Das kann man sich so vorstellen: Alice kann Bob eine Nachricht über eine Leitung schicken, die sie beide verbindet. Alice beschließt ein Grillfest zu veranstalten und kann Bob über diese Verbindung dazu einladen.


Dynamik kausaler Abfolgen: Der Beteiligte D kann die kausale Abfolge von künftigen Ereignissen für die Beteiligten A, B und C dynamisch kontrollieren.

Juan Carlos Palomino, Fakultät für Physik, Universität Wien

Falls Bob eine Einladung erhält, entscheidet er sich, für das Fest Ćevapčići vorzubereiten. Dies ist ein Beispiel für die Situation, in der das Ereignis, in dem Alice beschließt Bob zum Grillen einzuladen, das Ereignis beeinflusst, in dem sich Bob entscheidet Essen vorzubereiten. Eine solche Abfolge von Ereignissen kennzeichnet eine bestimmte kausale Struktur.

Forschung zu den Grundlagen der Quantenmechanik legt jedoch nahe, dass in der Quantenwelt kausale Strukturen "unbestimmt" sein könnten. In einer unbestimmten kausalen Struktur könnte es möglich sein, dass keine bestimmte Abfolge existiert, in der Ereignisse geschehen, d.h. ob Alice Bob beeinflusst oder Bob Alice beeinflusst, könnte nicht festgelegt sein.

Falls Kausalität tatsächlich unbestimmt ist, woher kommen diese unbestimmten kausalen Strukturen? Können sie dynamisch erhalten werden, so dass bestimmte kausale Strukturen unbestimmt werden? Und falls dies der Fall wäre, unter welchen Bedingungen kann dies geschehen? Antworten auf diese Fragen wären bemerkenswert, da sie Aufschluss über die Natur der Kausalität in der Quantenwelt geben würden.

In einer kürzlich im Fachjournal Physical Review X erschienen Publikation zeigte eine Gruppe von PhysikerInnen unter der Leitung von Časlav Brukner von der Universität Wien und dem Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften, dass -solange die Dynamik kausaler Strukturen kontinuierlich und umkehrbar ist- eine bestimmte kausale Struktur niemals unbestimmt werden kann.

Wiederum am Beispiel der Leitung, die Alice und Bob verbindet, erklärt bedeutet das, dass das Biegen oder Dehnen (eine kontinuierliche und umkehrbare Transformation) der Leitung zu keinerlei Änderungen in der kausalen Struktur führen würde, da Alice Bob weiterhin erreichen kann.

Falls man die kausale Struktur ändern wollte, müsste man die Leitung entweder unterbrechen und wieder verbinden (nicht kontinuierlich) oder die Leitung ersetzen (nicht umkehrbar). Die ForscherInnen untersuchten auch komplexere Situationen, in denen mehrere Beteiligte einbezogen waren. Zum Beispiel können Entscheidungen einer dritten Person, Charly, unter gewissen Umständen festlegen, ob die kausale Struktur künftiger Ereignisse bestimmt oder unbestimmt ist.

"Unsere Ergebnisse belegen, dass unter den physikalisch vernünftigen Annahmen von Kontinuität und Umkehrbarkeit eine Welt mit bestimmter kausaler Struktur niemals eine Welt mit einer unbestimmten kausalen Struktur werden wird und vice versa", fasst Esteban Castro, einer der AutorInnen der Publikation, zusammen. Diese Erkenntnis könnte zu einem besseren Verständnis der Rolle von Kausalität in der Quantenwelt führen.

Publikation in Physical Review X
"Dynamics of quantum causal structures", E. Castro-Ruiz, F. Giacomini, Č. Brukner
Phys. Rev. X 8, 011047 (2018)
DOI: 10.1103/PhysRevX.8.011047

Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Caslav Brukner (Deutsch und Englisch)
Quantenoptik, Quantennanophysik und Quanteninformation (Universität Wien) & IQOQI Wien (ÖAW)
Boltzmanngasse 5, 1090 Wien
T +43-1-4277-72582
caslav.brukner@univie.ac.at
https://www.quantumfoundations.org/

Esteban Castro Ruiz (Englisch & Spanisch)
Quantenoptik, Quantennanophysik und Quanteninformation (Universität Wien) & IQOQI Wien (ÖAW)
Boltzmanngasse 5, 1090 Wien
T +43-677-62364959
esteban.castro.ruiz@univie.ac.at

Offen für Neues.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.500 MitarbeiterInnen, davon 6.600 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 94.000 nationale und internationale Studierende inskribiert. Mit 174 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Weitere Informationen:

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.011047

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics