Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kaiserslauterer Physiker beobachten Diffusion einzelner Atome im Lichtbad

10.10.2016

Durch eine Kombination aus Experimenten und Theorie konnte erstmals die Diffusion einzelner Atome in periodischen Systemen verstanden werden. Die Wechselwirkung von einzelnen Atomen mit Licht bei ultratiefen Temperaturen fast am absoluten Nullpunkt liefert neue Erkenntnisse zur Ergodizität, der Grundannahme der Thermodynamik. Gemeinsam mit Forscherkollegen haben Quantenphysiker der TU Kaiserslautern ihre Ergebnisse nun in der renommierten Fachzeitschrift „Nature Physics“ veröffentlicht.

Unter Diffusion versteht man ein universelles physikalisches Phänomen, welches die Bewegung von Teilchen in ihrer jeweiligen Umgebung beschreibt, egal ob fest, flüssig oder gasförmig. Die ersten Untersuchungen von Robert Brown und die Erklärungen dazu von Albert Einstein liegen bereits mehr als hundert Jahre zurück: Robert Brown beobachtete die zufällige, unregelmäßige Zitterbewegung von Pollen in einer Flüssigkeit.


Fluoreszenzaufnah-men der Diffusion eines einzelnen Atoms.

TU Kaiserslautern/AG Widera

Albert Einstein und sein Forscherkollege Marian Smoluchowski interpretierten diese „Brownsche Bewegung“ korrekt als Folge der zufälligen Stöße von Flüssigkeitsmolekülen mit den Pollen. Die Diffusion in komplexen Systemen geht noch einen Schritt weiter und kann sehr verschiedene Eigenschaften haben: Tumorbewegung in Lebewesen, DNA-Transport in Zellen, Ionenbewegung in Batterien, atomare Bewegung auf Oberflächen – all dies sind Diffusionsvorgänge in komplexen Systemen.

An der Aufklärung der zugrundeliegenden Mechanismen besteht großes Interesse, die eines Tages bis weit in alltägliche Anwendungen reichen könnten. Physikalische Untersuchungen an ultrakalten Atomen, die an der TU Kaiserslautern durchgeführt wurden, liefern nun ein Verständnis für die Diffusion in periodischen Strukturen, relevant für verschiedenste komplexe Systeme.

... mehr zu:
»Atom »Atome »Brownsche Bewegung »Diffusion

Physiker der TU Kaiserslautern haben zusammen mit Wissenschaftlern der Universitäten Erlangen-Nürnberg und Kyoto in Japan einen wichtigen Schritt zum grundlegenden Verständnis der komplexen Diffusion und der Interpretation ihrer experimentellen Daten gemacht.

Für die Studie, die in der renommierten Fachzeitschrift Nature Physics veröffentlicht wurde, entwickelte das Kaiserslauterer Team um Professor Widera (Fachbereich Physik und Landesforschungszentrum OPTIMAS) ein neuartiges Modellsystem: Ein einzelnes Atom wird mit Lasern bis fast auf den absoluten Nullpunkt abgekühlt und in einer Falle aus Licht in einem nahezu perfekten Vakuum gefangen.

Das Atom wird dann in eine durch ein Lichtfeld erzeugte Umgebung eingebracht, in der die Licht-Absorption und Licht-Emission der Atome wie Stöße mit einem anderen Teilchen wirken. In dieser Umgebung kann die Diffusion nach Belieben eingestellt und die Bewegung des Atoms mit einer Kamera verfolgt werden.

Parallel entwickelten theoretische Physiker aus Erlangen-Nürnberg und Kyoto ein Modell zur Beschreibung der Dynamik des Systems. Zentraler Aspekt hierbei war, die Vorgänge im Hinblick auf die physikalische Größe der Ergodizität zu verstehen. Dank der hervorragenden Übereinstimmung von Experiment und Theorie konnten nun Diffusionsvorgänge jenseits der Brownschen Bewegung verstanden werden. Diese Ergebnisse könnten sich zukünftig auf das Verständnis von verschiedensten komplexen Systemen in Medizin, Biologie, Physik und Technik auswirken.

Grundlagen der Diffusion

Die Bewegung einzelner Zellen im Körper oder der Transport von Ladungsträgern in Energiespeichern sind nur im Zusammenhang mit der jeweiligen Umgebung zu verstehen. Die Teilchen dieser Umgebung stoßen permanent mit einer Zelle oder einem Ladungsträger und beeinflussen so ihre Bewegung. Diese Vorgänge können in vielen Fällen durch die Brownsche Bewegung mit der Theorie von Einstein beschrieben werden. Manchmal lassen sich die Beobachtungen allerdings nicht mit diesem Modell beschreiben, bisweilen kann man dem System diese nicht-Brownsche Dynamik auf den ersten Blick nicht ansehen. Den Wissenschaftlern der drei Universitäten ist es gelungen, sowohl theoretisch als auch experimentell zu zeigen, wie sich in bestimmten komplexen Systemen die Diffusion charakterisieren lässt.

Die Ergodizität als Schlüssel zum Verständnis komplexer Diffusionen

Ein zentraler Aspekt der Studien war es, das atomare System auf Zeitskalen zu untersuchen, die relevant für die Etablierung von Ergodizität sind. Ergodizität ist die Grundlage für die Thermodynamik und eine wichtige Größe für die Beschreibung von Diffusionsvorgängen. In einfachen Worten besagt die Ergodizitätshypothese, dass in einer Ansammlung von Teilchen die Bewegung eines einzelnen Teilchens repräsentativ für das gesamte Ensemble ist. Diese Annahme wird in der Regel allen beobachteten Phänomenen unseres Alltags zugrunde gelegt. Das gilt streng gesehen für die meisten Systeme allerdings nur für sehr große Zeiträume. Die Wissenschaftler konnten in ihrer Studie nun zeigen, dass selbst „normal“ erscheinende Diffusionsvorgänge in bestimmten Fällen die Ergodizität auf überraschend langen Zeitskalen verletzen können. Diese Ergebnisse haben interessante Konsequenzen für das Verständnis der Diffusion in komplexen Systemen und können zum Beispiel helfen, Beobachtungen und Messungen in biologischen Systemen neu zu bewerten und zu interpretieren.

Die Studie wurde in der renommierten Fachzeitschrift Nature Physics veröffentlicht: „Nonergodic diffusion of single atoms in a periodic potential“.
DOI 10.1038/nphys3911

Fragen dazu beantwortet:
Prof. Dr. Artur Widera - TU Kaiserslautern
Tel: 0631-205-4130
E-Mail: widera@physik.uni-kl.de

Katrin Müller | Technische Universität Kaiserslautern
Weitere Informationen:
http://www.uni-kl.de

Weitere Berichte zu: Atom Atome Brownsche Bewegung Diffusion

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hannoveraner Physikerteam sagt neue Moleküle aus Licht voraus
26.02.2020 | Leibniz Universität Hannover

nachricht Wie groß das Neutron ist
26.02.2020 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computersimulationen stellen bildlich dar, wie DNA erkannt wird, um Zellen in Stammzellen umzuwandeln

Forscher des Hubrecht-Instituts (KNAW - Niederlande) und des Max-Planck-Instituts in Münster haben entdeckt, wie ein essentielles Protein bei der Umwandlung von normalen adulten humanen Zellen in Stammzellen zur Aktivierung der genomischen DNA beiträgt. Ihre Ergebnisse werden im „Biophysical Journal“ veröffentlicht.

Die Identität einer Zelle wird dadurch bestimmt, ob die DNA zu einem beliebigen Zeitpunkt „gelesen“ oder „nicht gelesen“ wird. Die Signalisierung in der Zelle,...

Im Focus: Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

Forscher der Universität Bayreuth haben ein ungewöhnliches Material entdeckt: Bei einer Abkühlung auf zwei Grad Celsius ändern sich seine Kristallstruktur und seine elektronischen Eigenschaften abrupt und signifikant. In diesem neuen Zustand lassen sich die Abstände zwischen Eisenatomen mithilfe von Lichtstrahlen gezielt verändern. Daraus ergeben sich hochinteressante Anwendungsmöglichkeiten im Bereich der Informationstechnologien. In der Zeitschrift „Angewandte Chemie – International Edition“ stellen die Wissenschaftler ihre Entdeckung vor. Die neuen Erkenntnisse sind aus einer engen Zusammenarbeit mit Partnereinrichtungen in Augsburg, Dresden, Hamburg und Moskau hervorgegangen.

Bei dem ungewöhnlichen Material handelt es sich um ein Eisenoxid mit der Zusammensetzung Fe₅O₆. In einem Hochdrucklabor des Bayerischen Geoinstituts (BGI),...

Im Focus: Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

Studie von Mainzer Physikern zeigt: Experimente der nächsten Generation versprechen Antworten auf eine der aktuellsten Fragen der Neutrinophysik

Eine der spannendsten Herausforderungen der modernen Physik ist die Ordnung oder Hierarchie der Neutrinomassen. Eine aktuelle Studie, an der Physiker des...

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

CLIMATE2020 – Weltweite Online-Klimakonferenz vom 23. bis 30. März 2020

26.02.2020 | Veranstaltungen

Automatisierung im Dienst des Menschen

25.02.2020 | Veranstaltungen

Genomforschung für den Artenschutz - Internationale Fachtagung in Frankfurt

25.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

IGF macht's möglich: Lemgoer Forschungsteam entwickelt neues Verfahren zur Abwehr von Noroviren auf Obst und Gemüse

26.02.2020 | Biowissenschaften Chemie

CLIMATE2020 – Weltweite Online-Klimakonferenz vom 23. bis 30. März 2020

26.02.2020 | Veranstaltungsnachrichten

Neue Wege im Kampf gegen die Parkinson-Krankheit: HZDR-Forscher entwickeln Radiotracer für die Differentialdiagnostik

26.02.2020 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics