Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jenseits der Erde

03.07.2012
Einer Gruppe von Wissenschaftlern am Bonner MPIfR und dem Astro Space Center in Moskau ist es zum ersten Mal gelungen, mit Hilfe des Software-Korrelationsrechners DiFX interferometrische Signale oder "fringes" zwischen dem 100-m-Radioteleskop Effelsberg und dem weltraumgebundenen Satelliten-Radioteleskop Spektr-R des RadioAstron-Projekts zu erhalten.
Damit wurden Beobachtungen bei der höchsten überhaupt möglichen Winkelauflösung in der Astronomie durchgeführt, gleichzeitig mit zwei Radioteleskopen in einem Abstand von mehr als 300000 Kilometern. Die beiden Teleskope waren auf BL Lacertae gerichtet, den Kern einer aktiven Galaxie in ca. 900 Millionen Lichtjahren Entfernung.

RadioAstron ist ein internationales Projekt zur Durchführung von VLBI ("Very Long Baseline-Interferometrie") im Weltraum. Es wird vom russischen "Astro Space Center" (ASC) in Moskau geleitet; die Beobachtungen erfolgen über ein 10-m-Satelliten-Radioteleskop an Bord des russischen Satelliten Spektr-R. Der Satellit wurde im Juli 2011 gestartet und umkreist die Erde auf einer elliptischen Umlaufbahn mit einem maximalen Abstand von 350000 Kilometern. Das Projekt kombiniert die Satellitendaten mit Beobachtungen von erdgebundenen Radioteleskopen und erreicht damit extrem hohe Winkelauflösungen - sie entsprechen tatsächlich denen eines Einzelteleskops von der Größe des Abstands zwischen Erde und Mond! RadioAstron wird es ermöglichen, eine Reihe von aufregenden wissenschaftlichen Projekten anzugehen. Dazu gehören die Teilchenbeschleunigung in der Umgebung von extrem massereichen Schwarzen Löchern in den Zentren von aktiven Galaxien, aber auch Neutronensterne und Pulsare, Dunkle Materie und Dunkle Energie.

Die interferometrische Beobachtungstechnik in der Radioastronomie, die im RadioAstron-Projekt zum Tragen kommt, basiert auf jeweils zwei Radioteleskopen, die gleichzeitig die Radiosignale einer bestimmten Quelle am Himmel aufzeichnen. Die Signale werden dann in einem Prozess, den man "Korrelation" nennt, elektronisch miteinander verglichen. Der Vorgang entspricht dem Doppelspalt-Experiment im Physik-Praktikum, wobei eine Reihe von sinusförmigen Helligkeitsänderungen als Funktion der Richtung auftreten. Diese Signale werden in der Radioastronomie als "fringes" bezeichnet. Je größer der Abstand zwischen den beiden Teleskopen ist, desto genauer kann man die Position der Quelle am Himmel aus den Messungen ableiten.

Da durch die Trägerrakete Größe und Gewicht eines Satelliten eingeschränkt sind, musste der Durchmesser des Teleskopspiegels im RadioAstron-Projekt auf 10 m begrenzt werden. Das Teleskop ist durch die vergleichweise geringe Größe nicht sehr empfindlich für die Aufnahme von sehr schwachen Radiosignalen. Dadurch wird die Zusammenarbeit mit dem MPIfR in Bonn extrem wichtig. Das Bonner Institut betreibt das 100-m-Radioteleskop bei Bad Münstereifel-Effelsberg, das als sehr großes und empfindliches Radioteleskop einen begehrter Partner für diese Art von Interferometrie-Experimenten darstellt.

Erste interferometrische Signale oder "fringes" im Rahmen des RadioAstron-Projekts konnten bereits Ende 2011 aufgezeichnet werden, aus Beobachtungen ebenfalls zusammen mit dem 100-m-Radioteleskop, die am Korrelator des "Astro Space Center" in Moskau ausgewertet wurden. Die hier beschriebenen Beobachtungen sind auf BL Lac gerichtet, den Kern einer aktiven Galaxie im Sternbild Lacerta (Eidechse) in einer Entfernung von ca. 900 Millionen Lichtjahren. Mit starker Variabilität und deutlicher Polarisation in optischen Wellenlängen stellt BL Lac den Prototyp für eine ganze Klasse von Galaxien mit aktiven Galaxienkernen ("Active Galactic Nuclei", AGN) dar.

Die Abbildung zeigt ein Bild der ersten Detektion von BL Lac in interferometrischen Beobachtungen mit dem 100-m-Radioteleskop und dem Satellitenteleskop von RadioAstron, die mit dem neuen Korrelatorsystem am MPIfR in Bonn ausgewertet wurden. Die unterschiedlichen Farben zeigen die Intensität des gemessenen interferometrischen Signals.

"Ein wichtiger neuer Aspekt dieser Analyse liegt darin, dass wir die Daten nicht wie bisher mit einem Hardware-Korrelator auswerten, sondern mit dem DiFX-Software-Korrelator, der auf den VLBI-Computerstationen in unserem Institut in Bonn zum Einsatz kommt", sagt Anton Zensus, Direktor am MPIfR. "Unsere Wissenschaftler in Bonn haben in Zusammenarbeit mit den Experten von RadioAstron den Programmcode des DiFX-Softwarekorrelators so umgeschrieben, dass er auch für die Auswertung von interferometrischen Satellitenbeobachtungen, also Weltraum-VLBI, eingesetzt werden kann." Normalerweise sind VLBI-Beobachtungen auf erdgebundene Radioteleskope beschränkt. Die Software musste nun so umgeschrieben werden, dass das Programm die Bewegungen des Satelliten im Orbit miteinbezieht und ausserdem den unterschiedlichen Ablauf der Zeit auf der Erde und im Weltraum berücksichtigt. Das sind winzige Unterschiede auf der Basis von Vorhersagen der Allgemeinen Relativitätstheorie, die aber entscheidend für die Entdeckung von interferometrischen Signalen zwischen beiden Teleskopen sind. Der DiFX-Korrelator ist ein offenes Software-Projekt, an dem eine Reihe von Radioastronomen und Geodäten aus unterschiedlichen Ländern beteiligt sind. Sie kommen aus Australien, wo dieses Projekt ursprünglich entwickelt wurde, aus Europa und aus den Vereinigten Staaten. Damit wird es nun möglich, das RadioAstron-Projekt mit einer Reihe von erdgebundenen Radioteleskopen zu verbinden und weltweit mit radioastronomischen Instituten zusammenzuarbeiten.

Ein weiterer großer Vorteil der Verarbeitung von RadioAstron-Daten mit dem DiFX-Korrelator liegt darin, dass die normalerweise zum Einsatz kommenden Programme zur Analyse interferometrischer Daten das Datenformat von DiFX erkennen und damit eine unmittelbare Weiterverarbeitung der Daten im jeweils bevorzugten Software-Paket der Wissenschaftler möglich wird.

"Das ist eine aufregende neue Entwicklung für die RadioAstron-Mission, damit wird die erfolgreiche Weiterverarbeitung und Analyse der Daten im astronomischen und physikalischen Sinne möglich", sagt James Anderson vom Max-Planck-Institut für Radioastronomie. "Wir können jetzt anfangen, Radiobilder unserer Forschungsobjekte bei Auflösungen im Mikrobogensekundenbereich zu erstellen, und das ist etwas, wozu wir bisher noch nicht in der Lage waren."

Dr. Andrei Lobanov,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-191
E-mail: alobanov@mpifr-bonn.mpg.de

Dr. James Anderson,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-356
E-mail: anderson@mpifr-bonn.mpg.de

Prof. Dr. Anton Zensus,
Direktor und Leiter der Forschungsgruppe "Radioastronomie / VLBI",
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49(0)228-525-378
E-mail: azensus@mpifr-bonn.mpg.de

Norbert Junkes | Max-Planck-Institut
Weitere Informationen:
http://www.mpifr-bonn.mpg.de/public/pr/pr-radioastron2012-dt.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Einzelne Atome im Visier
25.06.2019 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Simulierte Synapsen - TU-Forscher berechnen das neuronale Netz des Gehirns
24.06.2019 | Technische Universität Darmstadt

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einzelne Atome im Visier

Mit der NMR-Spektroskopie ist es in den letzten Jahrzehnten möglich geworden, die räumliche Struktur von chemischen und biochemischen Moleküle zu erfassen. ETH-Forschende haben nun einen Weg gefunden, wie man dieses Messprinzip auf einzelne Atome anwenden kann.

Die Kernspinresonanz-Spektroskopie – kurz NMR-Spektroskopie – ist eine der wichtigsten physikalisch-chemischen Untersuchungsmethoden. Damit lässt sich...

Im Focus: Partielle Mondfinsternis am 16./17. Juli 2019

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Wie im letzten Jahr findet auch 2019 eine in den späten Abendstunden in einer lauen Sommernacht gut zu beobachtende Mondfinsternis statt, und zwar in der Nacht vom 16. auf den 17. Juli. Die Finsternis ist zwar nur partiell - der Mond tritt also nicht vollständig in den Erdschatten ein - es ist aber für die nächsten Jahre die einzige gut sichtbare Mondfinsternis im deutschen Sprachraum.

Am Dienstagabend, den 16. Juli, wird ein kosmisches Schauspiel zu sehen sein: Der Vollmond taucht zu einem großen Teil in den Schatten der Erde ein, es findet...

Im Focus: Fraunhofer IDMT zeigt akustische Qualitätskontrolle auf der Fachmesse für Messtechnik »Sensor + Test 2019«

Das Ilmenauer Fraunhofer-Institut für Digitale Medientechnologie IDMT präsentiert vom 25. bis 27. Juni 2019 am Gemeinschaftsstand der Fraunhofer-Gesellschaft (Stand 5-248) seine neue Lösung zur berührungslosen, akustischen Qualitätskontrolle von Werkstücken und Bauteilen. Da die Prüfung zerstörungsfrei funktioniert, kann teurer Prüfschrott vermieden werden. Das Prüfverfahren wird derzeit gemeinsam mit verschiedenen Industriepartnern im praktischen Einsatz erfolgreich getestet und hat das Technology Readiness Level (TRL) 6 erreicht.

Maschinenausfälle, Fertigungsfehler und teuren Prüfschrott reduzieren

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

17. Internationale Conference on Carbon Dioxide Utilization in Aachen

25.06.2019 | Veranstaltungen

Meeresleuchten, Klimawandel, Küstenmeere Afrikas – Spannende Vielfalt bei „Warnemünder Abenden 2019“

24.06.2019 | Veranstaltungen

Plastik: Mehr Kreislauf gegen die Krise gefordert

21.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Einzelne Atome im Visier

25.06.2019 | Physik Astronomie

Clever Chillen mit weniger Kältemittel: Neue Blue e Chiller von 11 bis 25 kW

25.06.2019 | Energie und Elektrotechnik

Neuer Therapieansatz fördert die Reparatur von Blutgefässen nach einem Hirnschlag

25.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics