Jagd nach schnellen Neutronen

Bei der Spaltung von Atomkernen in den Kernreaktoren der heute betriebenen Kernkraftwerke fallen radioaktive Reststoffe an, die teilweise sehr giftig sind und nur langsam zerfallen. Manche Stoffe benötigen einige Hunderttausend Jahre, bis sie ihre Energie in Form von radioaktiver Strahlung abgegeben haben. Zugleich ist in Deutschland, wie in vielen anderen Staaten auch, die Endlagerfrage noch nicht gelöst.

Wissenschaftler sehen schon seit Längerem in der Transmutation einen vielversprechenden Weg gerade für die langlebigen radioaktiven Abfallstoffe. Es handelt sich hierbei um radioaktive Schwermetalle wie Plutonium, Americium und Curium, die in der Fachsprache „minore Aktiniden“ genannt werden. Gelänge es, diese mit Hilfe von schnellen Neutronen in weniger langlebige bzw. teilweise sogar stabile Stoffe umzuwandeln, dann bräuchte man zwar immer noch Endlager, doch könnten diese kleiner und in ihren zeitlichen Dimensionen überschaubarer ausfallen.

Das mit rund einer Mio. Euro von der Europäischen Union geförderte Projekt ERINDA (European Research Infrastructures for Nuclear Data Applications), das am 27. und 28. Januar 2011 im HZDR startet, soll wichtige Daten für die Entwicklung künftiger Anlagen zur Transmutation radioaktiven Abfalls liefern.

Arbeit von Neutronen

Unter Transmutation versteht man die Umwandlung chemischer Elemente in andere chemische Elemente durch Kernreaktionen. Transmutationen finden beispielsweise in Sternen statt, denn nur so können Elemente im Universum entstehen, die schwerer sind als Eisen. Neutronen, also die elektrisch ungeladenen Teilchen, die zusammen mit positiv geladenen Protonen die Bestandteile der Atomkerne bilden, spielen dafür eine zentrale Rolle.

Neutronen können Atomkerne spalten und setzen dabei Energie frei, die im Kernkraftwerk in elektrische Energie umgewandelt wird. Dabei werden wieder Neutronen frei. Zudem entstehen Spaltprodukte, von denen die meisten relativ schnell zerfallen – man spricht von einer kurzen Halbwertszeit – und dabei Strahlung abgeben. Neutronen können aber auch von Atomkernen eingefangen werden, die sich dadurch in andere Atomkerne umwandeln. So können Plutonium und andere radioaktive Schwermetalle entstehen, die nur langsam zerfallen, also eine lange Halbwertszeit haben, und zudem hochgiftig sind.

Doch auch diese radioaktiven Schwermetalle sind weiter spaltbar und könnten in den Transmutationsanlagen der Zukunft auch zur Energiegewinnung eingesetzt werden. Allerdings werden dafür schnelle Neutronen gebraucht. Für die Kernspaltung in heutigen Reaktoren sind dagegen langsame, weniger energiereiche Neutronen verantwortlich.

Modernste Neutronenstrahl-Technologie

Um Transmutationsanlagen konzipieren und bauen zu können, müssen die Eigenschaften schneller Neutronen genauestens bekannt sein. Damit befasst sich HZDR-Wissenschaftler Dr. Arnd Junghans, der gleichzeitig das ERINDA-Projekt koordiniert. Mit der Neutronenquelle nELBE verfügen er und seine Kollegen über eine Anlage für schnelle Neutronen mit einer hohen Bewegungsenergie. Die Neutronen entstehen, indem Elektronen aus dem Elektronenbeschleuniger ELBE auf ein Target, also eine Zieloberfläche, aus flüssigem Blei gelenkt werden. Stößt ein Elektron mit einem Bleiatom zusammen, so wird es abgebremst und gibt einen Teil seiner Energie in Form eines Photons ab. Dieses Lichtteilchen ist so energiereich, dass es ein Neutron aus einem Atomkern herausschlagen kann. „Dabei werden 200.000 ultrakurze Neutronenpulse pro Sekunde abgegeben, eine weltweit einzigartige Leistung“, so Arnd Junghans. Die bisherigen Experimente dienten dazu, die Reaktion der schnellen Neutronen mit Eisenatomen zu untersuchen. Eisenlegierungen spielen in zukünftigen Transmutationsanlagen als Baustoff eine Rolle. Werden die Neutronen beispielsweise durch die Eisenkerne zu sehr abgebremst, fehlt ihnen die Energie für die eigentliche Aufgabe: die Umwandlung von radioaktiven Schwermetallen.

Bald sollen die schnellen Neutronen im HZDR auch auf Plutonium-Kerne gelenkt werden, um die genauen Umwandlungsraten bestimmen zu können. Diese Experimente werden im Rahmen eines Projektes durch das Bundesministerium für Bildung und Forschung gefördert. „Über die Messung der Flugzeit und der Geschwindigkeit der Neutronen können wir deren Energie berechnen“, so Arnd Junghans weiter. Die Informationen

werden gebraucht, um neue Typen von Kernreaktoren, so zum Beispiel für die Transmutation, zu entwickeln oder bestehende Anlagen zu optimieren.

Um die benötigten Kerndaten zu erheben, wird im Rahmen des ERINDA-Projektes der Zugang von Wissenschaftlern zu Forschungsinfrastrukturen, wie dem Neutronenexperiment nELBE im HZDR, gefördert. Außerdem wird der Austausch von Wissenschaftlern und Forschungsergebnissen unterstützt. An dem Forschungsprojekt sind insgesamt 13 Partner aus 10 europäischen Ländern beteiligt.

Weitere Informationen:
Dr. Arnd Junghans
Projektkoordinator ERINDA
Helmholtz-Zentrum Dresden-Rossendorf
Tel. +49 351 260-3589
Fax +49 351 260-13589
a.junghans@hzdr.de
Medienkontakt:
Dr. Christine Bohnet
Pressesprecherin
Helmholtz-Zentrum Dresden-Rossendorf
Tel. +49 351 260-2450
Fax +49 351 260-2700
presse@hzdr.de
Über das HZDR
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hat das Ziel, langfristig ausgerichtete Spitzenforschung auf den gesellschaftlich relevanten Gebieten Schlüsseltechnologien, Struktur der Materie, Energie und Gesundheit zu leisten. In strategischen Kooperationen mit Partnern aus Forschung und Industrie bearbeiten wir deshalb neue, für die moderne Industriegesellschaft drängende Themenfelder zu folgenden Fragestellungen:
• Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
• Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
• Wie schützt man Mensch und Umwelt vor technischen Risiken?
Zur Beantwortung dieser wissenschaftlichen Fragen setzen wir sechs Großgeräte mit teils einmaligen Experimentiermöglichkeiten ein, die auch externen Nutzern zur Verfügung stehen.

Die Ausbildung von wissenschaftlichem und technischem Nachwuchs erfolgt auf hohem Niveau und in enger Zusammenarbeit mit den Hochschulen. Auf die Vereinbarkeit von Familie und Beruf achtet das HZDR in besonderem Maße.

Die Helmholtz-Gemeinschaft leistet Beiträge zur Lösung großer und drängender Fragen von Gesellschaft, Wissenschaft und Wirtschaft durch wissenschaftliche Spitzenleistungen in sechs Forschungsbereichen: Energie, Erde und Umwelt, Gesundheit, Schlüsseltechnologien, Struktur der Materie sowie Luftfahrt, Raumfahrt und Verkehr. Die Helmholtz-Gemeinschaft ist mit über 30.000 Mitarbeiterinnen und Mitarbeitern in 17 Forschungszentren und einem Jahresbudget von rund 3 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands. Ihre Arbeit steht in der Tradition des großen Naturforschers Hermann von Helmholtz (1821-1894).

Media Contact

Dr. Christine Bohnet Helmholtz-Zentrum

Weitere Informationen:

http://www.helmholtz.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer