Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Isolatoren mit leitenden Rändern verstehen

14.01.2019

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bisher sind ihre Eigenschaften noch wenig verstanden. Physiker der Goethe-Universität haben die sogenannten topologischen Isolatoren nun mithilfe ultrakalter Quantengase modelliert. In der aktuellen Ausgabe der Physical Review Letters zeigen sie, wie man die Randzustände experimentell sichtbar machen könnte.

Man stelle sich eine Scheibe aus einem Isolator vor, an deren Rand ein Strom immer in dieselbe Richtung fließt. „Dadurch ist es unmöglich, dass ein Quantenteilchen aufgehalten wird, da es den Zustand in die andere Richtung zu laufen schlicht nicht gibt“, erklärt Bernhard Irsigler, der Erstautor der Studie.


Künstliche Grenze in einem optischen Gitter (blau), befüllt mit einem ultrakalten Quantengas, das aus 'spin-up'-Teilchen (rot) und 'spin-down'-Teilchen (grün) besteht. 'spin-up'-Teilchen können an der Grenze entlang (und nur dort) nur nach links laufen, 'spin-down'-Teilchen nur nach rechts.

Bildrechte: Bernhard Irsigler

Anders ausgedrückt: In den Randzuständen fließt der Strom ohne Widerstand. Man könnte sie beispielsweise dazu verwenden, die Zuverlässigkeit und Energie-Effizienz von Mobilgeräten zu steigern. Aktuell wird auch erforscht, wie man damit effizientere Laser bauen könnte.

Um das Verhalten topologischer Isolatoren besser verstehen zu können, hat man sie in den vergangenen Jahren auch in ultrakalten Quantengasen erzeugt. Diese Gase entstehen, wenn man ein gewöhnliches Gas auf Temperaturen zwischen einem Millionstel und einem Milliardstel Grad über dem absoluten Nullpunkt abkühlt.

Damit sind ultrakalte Quantengase die kältesten Orte im Universum. Erzeugt man ein ultrakaltes Quantengas zusätzlich in einem optischen Gitter aus Laserlicht, ordnen sich die Gas-Atome so regelmäßig an wie im Kristallgitter eines Festkörpers. Anders als in einem realen Festkörper kann man viele Parameter variieren und so auch künstliche Quantenzustände studieren.

„Wir sprechen gern von einem Quantensimulator, weil ein solches System uns viele Dinge verrät, die in einem Festkörper passieren. So können wir mit ultrakalten Quantengasen in optischen Gittern die Grundlagenphysik von topologischen Isolatoren verstehen“, erläutert Koautor Jun-Hui Zheng.

Ein bedeutender Unterschied zwischen einem Festkörper und einem Quantengas ist jedoch, dass die wolkenförmigen Gase keine definierten Ränder haben. Wie entscheidet also ein topologischer Isolator im ultrakalten Quantengas, wo seine Ränder sind?

Diese Frage beantworten die Physiker aus der Arbeitsgruppe von Prof. Walter Hofstetter vom Institut für Theoretische Physik der Goethe-Universität in ihrer Studie. Sie haben eine künstliche Grenze zwischen einem topologischen Isolator und einem normalen Isolator betrachtet. Diese stellt den Rand des topologischen Isolators dar, an dem sich der leitfähige Randzustand ausbildet.

„Wir zeigen, dass der Randzustand durch Quantenkorrelationen charakterisiert ist, die man im Experiment mit Hilfe eines Quantengas-Mikroskops messen könnte. Derartige Messungen werden beispielsweise an der Harvard University, am MIT und am Max-Planck-Institut für Quantenoptik in München durchgeführt“, so Hofstetter. Ein Quantengas-Mikroskop ist ein Gerät, mit dem man im Experiment einzelne Atome sehen kann.

„Entscheidend für unsere Arbeit ist, dass wir die Wechselwirkung zwischen den Teilchen des Quantengases explizit berücksichtigten. Das macht die Untersuchung realistischer, aber sehr viel komplizierter. Ohne Supercomputer kann man die aufwendigen Berechnungen nicht durchführen. Besonders wichtig ist für uns auch die enge Zusammenarbeit mit führenden europäischen Wissenschaftlerinnen und Wissenschaftlern im Rahmen der DFG Forschergruppe‘Artificial Gauge Fields and Interacting Topological Phases in Ultracold Atoms‘“, ergänzt Hofstetter.

Ein Bild zum Download finden Sie unter: http://www.uni-frankfurt.de/75773481
Bildtext: Künstliche Grenze in einem optischen Gitter (blau), befüllt mit einem ultrakalten Quantengas, das aus 'spin-up'-Teilchen (rot) und 'spin-down'-Teilchen (grün) besteht. 'spin-up'-Teilchen können an der Grenze entlang (und nur dort) nur nach links laufen, 'spin-down'-Teilchen nur nach rechts.
Bildrechte: Bernhard Irsigler

Wissenschaftliche Ansprechpartner:

Bernhard Irsigler, Institut für Theoretische Physik, Campus Riedberg, Tel.: 069-798 47883. irsigler@th.physik.uni-frankfurt.de.

Originalpublikation:

Bernhard Irsigler, Jun-Hui Zheng, and Walter Hofstetter: Interacting Hofstadter interface, Physical Review Letters, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.010406

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation
30.03.2020 | Leibniz Universität Hannover

nachricht Stabile Blasen und ein Wasserläufer bewahren Stahl vor Erosion
30.03.2020 | Otto-von-Guericke-Universität Magdeburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

Ein internationales Team unter Beteiligung von Prof. Dr. Michael Kues vom Exzellenzcluster PhoenixD der Leibniz Universität Hannover hat eine neue Methode zur Erzeugung quantenverschränkter Photonen in einem zuvor nicht zugänglichen Spektralbereich des Lichts entwickelt. Die Entdeckung kann die Verschlüsselung von satellitengestützter Kommunikation künftig viel sicherer machen.

Ein 15-köpfiges Forscherteam aus Großbritannien, Deutschland und Japan hat eine neue Methode zur Erzeugung und zum Nachweis quantenverstärkter Photonen bei...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

Physiker der Arbeitsgruppe von Professor Alexander Szameit an der Universität Rostock ist es in Zusammenarbeit mit Kollegen von der Universität Würzburg gelungen, einen „Trichter für Licht“ zu entwickeln, der bisher nicht geahnte Möglichkeiten zur Entwicklung von hypersensiblen Sensoren und neuen Technologien in der Informations- und Kommunikationstechnologie eröffnet. Die Forschungsergebnisse wurden jüngst im renommierten Fachblatt Science veröffentlicht.

Der Rostocker Physikprofessor Alexander Szameit befasst sich seit seinem Studium mit den quantenoptischen Eigenschaften von Licht und seiner Wechselwirkung mit...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Künstliche Intelligenz findet das optimale Werkstoffrezept

Die möglichen Eigenschaften nanostrukturierter Schichten sind zahllos – wie aber ohne langes Experimentieren die optimale finden? Ein Team der Materialforschung der Ruhr-Universität Bochum (RUB) hat eine Abkürzung ausprobiert: Mit einem Machine-Learning-Algorithmus konnten die Forscher die strukturellen Eigenschaften einer solchen Schicht zuverlässig vorhersagen. Sie berichten in der neuen Fachzeitschrift „Communications Materials“ vom 26. März 2020.

Porös oder dicht, Säulen oder Fasern

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

UN World Water Day 22 March: Water and climate change - How cities and their inhabitants can counter the consequences

17.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

30.03.2020 | Physik Astronomie

Brillen-Flora: das Miniversum vor der Nase

30.03.2020 | Biowissenschaften Chemie

Neue Materialien: Strahlendes Weiß ohne Pigmente

30.03.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics