Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

IPP-Teststand ELISE erzielt Weltrekord

27.02.2015

Nach zwei Jahren Forschungsarbeit wurden im Teststand ELISE des Max-Planck-Instituts für Plasmaphysik (IPP) in Garching bei München jetzt Weltrekord-Werte erreicht: Im erstmals gelungenen Ein-Stunden-Betrieb wurde ein gepulster Teilchenstrahl bislang unerreichter Qualität erzeugt: baumstammdick, homogen, zeitlich stabil und dabei neun Ampere stark. Mit ELISE, der weltweit größten Testanlage ihrer Art, wird die Heizung entwickelt, die das Plasma des internationalen Fusionstestreaktors ITER auf viele Millionen Grad bringen soll. Kernstück ist eine im IPP entwickelte neuartige Hochfrequenz-Ionenquelle, die den energiereichen Teilchenstrahl erzeugt.

Die von dem internationalen Testreaktor ITER (lat.: der Weg) gestellte Aufgabe ist anspruchsvoll: Um das ITER-Plasma auf viele Millionen Grad Celsius aufzuheizen, sollen zwei energiereiche Teilchenstrahlen je 16,5 Megawatt Heizleistung in das 800 Kubikmeter große Plasmavolumen pumpen. Ungefähr türgroß wird der Querschnitt dieser Teilchenstrahlen sein – und damit die heute genutzten Strahlen, die mit etwa tellergroßem Querschnitt und deutlich kleinerer Leistung auskommen, weit hinter sich lassen.


Per Wärmekamera aufgenommenes Bild des ELISE-Kalorimeters, das den Energieinhalt der erzeugten Teilchenstrahlen misst: Hier zeigt einer der Rekordstrahlen seine glühende Signatur.

Foto: IPP

Die Testanlage ITER, die zurzeit in weltweiter Zusammenarbeit in Cadarache in Südfrankreich aufgebaut wird, soll zeigen, dass ein Energie lieferndes Fusionsfeuer möglich ist. Ähnlich wie die Sonne soll ein künftiges Fusionskraftwerk aus der Verschmelzung von Atomkernen Energie gewinnen.

Der Brennstoff – ein Wasserstoffplasma – muss dazu berührungsfrei in einem Magnetfeldkäfig eingeschlossen und auf Zündtemperaturen über 100 Millionen Grad aufgeheizt werden. 500 Megawatt Fusionsleistung soll ITER erzeugen – zehnmal mehr, als zuvor zur Plasmaheizung aufgewendet wurde.

Entwicklungsarbeit im Teststand ELISE

Diese Plasmaheizung wird etwa zur Hälfte die so genannte „Neutralteilchen-Heizung“ übernehmen: Schnelle Wasserstoffatome, die durch den Magnetfeldkäfig hindurch in das Plasma hineingeschossen werden, geben über Stöße ihre Energie an die Plasmateilchen ab. So bringen heutige Heizungen, zum Beispiel an der IPP-Fusionsanlage ASDEX Upgrade in Garching, das Plasma per Knopfdruck auf ein Mehrfaches der Sonnentemperatur.

Die Großanlage ITER stellt jedoch erhöhte Anforderungen: Zum Beispiel müssen die Teilchenstrahlen viel dicker und die einzelnen Teilchen viel schneller sein als bisher, damit sie tief genug in das voluminöse Plasma eindringen können. Anstelle der bisher für die Produktion des Teilchenstrahls genutzten elektrisch positiv geladenen Ionen müssen daher negativ geladene Ionen verwendet werden, die extrem fragil sind. Die dazu im IPP entwickelte Hochfrequenz-Ionenquelle wurde als Prototyp in den ITER-Entwurf aufgenommen. Auch der Auftrag zur Anpassung an die ITER-Anforderungen ging Ende 2012 an das IPP.

Mit dem Teststand ELISE (Extraction from a Large Ion Source Experiment) wurde in den vergangenen zwei Jahren eine Quelle untersucht, die bereits halb so groß ist wie eine spätere ITER-Quelle. Sie erzeugt einen Teilchenstrahl von rund einem Quadratmeter Querschnittsfläche. Mit dem gewachsenen Format mussten die bisherigen technischen Lösungen für das Heizverfahren überarbeitet werden.

Schritt für Schritt ist ELISE damit in neue Größenordnungen vorgedrungen. Kürzlich gelangen nun einstündige Betriebspulse der Ionenquelle, in denen alle drei Minuten für 20 Sekunden ein stabiler und homogener, rund neun Ampere starker Ionenstrahl erzeugt werden konnte. Der Gasdruck in der Quelle und die Menge der zurückgehaltenen Elektronen entsprachen den ITER-Vorgaben – kurz: Weltrekord.

Hintergrund: Die technischen Details

Um Wasserstoffatome beschleunigen zu können, müssen sie zunächst als geladene Teilchen – als positiv oder negativ geladene Ionen – für elektrische Kräfte greifbar werden. Dies geschieht in der Ionenquelle: In Wasserstoffgas eingestrahlte Hochfrequenzwellen ionisieren und zerlegen einen Teil der Wasserstoffmoleküle. Das entstandene Plasma, eine Mischung neutraler Teilchen, negativer Elektronen sowie meist positiv geladener Ionen, strömt auf eine erste gitterförmige Elektrode. Durch die mehreren 100 Öffnungen dieses Gitters werden ebenso viele einzelne Ionenstrahlen aus dem Plasma herausgezogen. Nach der Beschleunigung durch zwei weitere Gitter verschmelzen die fingerdicken Einzelstrahlen schließlich zu einem breiten Gesamtstrahl, dessen Querschnitt bei ELISE rund einen Quadratmeter groß ist.

Sind die Oberflächen der Ionenquelle mit geeignetem Material belegt, mit Cäsium zum Beispiel, dann können die Wasserstoffatome dort Elektronen aufnehmen: So entstehen die für ITER benötigten negativ geladenen Wasserstoffionen. Um die gleichzeitig aus dem Plasma herausgezogenen, aber unerwünschten Elektronen loszuwerden, behindert ein Quermagnetfeld im Plasma ihren Flug zum ersten Gitter. Kleine, in das zweite Gitter eingebaute Permanent-Magnete lenken die Elektronen dann endgültig aus dem Strahl heraus. Die viel schwereren Ionen fliegen dagegen nahezu unbehindert weiter. Nicht nur dieses magnetische Innenleben macht die ELISE-Gitter zu technischen Meisterstücken: Hinzu kommt eine ausgefeilte Wasserkühlung, die trotz der hohen Wärmebelastung während der Heizpulse jede einzelne Öffnung auf hundertstel Millimeter relativ zu ihrem Partner im folgenden Gitter in Position hält.

Damit dies alles funktioniert, müssen zahlreiche Einzelgrößen – zum Beispiel die Hochfrequenzleistung, die Cäsiumkonzentration, die Wandtemperatur, die Gitterspannungen und das Magnetfeld zum Ablenken der Elektronen – genau aufeinander abgestimmt werden. Nur dann erhält man das gewünschte Ergebnis, einen stabilen und homogenen Strahl aus schnellen, negativ geladenen Wasserstoffionen. Damit die schnellen Teilchen später bei ITER ungehindert durch den Magnetfeldkäfig in das Plasma eindringen können, müssen sie zuvor wieder neutralisiert werden.

 Als schnelle Wasserstoffatome schießen sie schließlich in das Plasma hinein und geben ihre Energie an die Plasmateilchen ab.

Wie geht es weiter?

Inzwischen wurde die Ionenquelle erstmals seit Betriebsbeginn wieder geöffnet: Nach der Reinigung der Quelle will man dann mit erhöhter Leistung die vollen Zielwerte erreichen. Das System in Originalgröße wird anschließend das italienische Fusionsinstitut der ENEA in Padua untersuchen und dabei mit dem IPP zusammenarbeiten. Zur Vorbereitung wird hier in den nächsten zwei Jahren das italienische Team trainiert und zugleich die Entwicklung an ELISE weiterlaufen.

Weitere Informationen:

http://www.ipp.mpg.de/de/aktuelles/presse/pi/2014/02_15

Isabella Milch | Max-Planck-Institut für Plasmaphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der Zeit atomarer Vorgänge auf der Spur
22.02.2019 | Max-Planck-Institut für Kernphysik

nachricht Jet/Hüllen-Rätsel in Gravitationswellenereignis gelöst
22.02.2019 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Jet/Hüllen-Rätsel in Gravitationswellenereignis gelöst

Ein internationales Forscherteam unter Beteiligung von Astronomen des Bonner Max-Planck-Instituts für Radioastronomie hat Radioteleskope auf fünf Kontinenten miteinander verknüpft, um das Vorhandensein eines stark gebündelten Materiestrahls, eines sogenannten Jets zu beweisen, der vom Überrest des bisher einzigen bekannten Gravitationswellenereignisses ausgeht, bei dem zwei Neutronensterne miteinander verschmolzen. Bei den Beobachtungen im weltweiten Netzwerk spielte das 100-m-Radioteleskop in Effelsberg eine wichtige Rolle.

Im August 2017 wurde zum ersten Mal die Verschmelzung zweier sehr kompakter Sternüberreste, sogenannter Neutronensterne, beobachtet, deren vorhergehende...

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Materialdesign in 3D: vom Molekül bis zur Makrostruktur

Mit additiven Verfahren wie dem 3D-Druck lässt sich nahezu jede beliebige Struktur umsetzen – sogar im Nanobereich. Diese können, je nach verwendeter „Tinte“, die unterschiedlichsten Funktionen erfüllen: von hybriden optischen Chips bis zu Biogerüsten für Zellgewebe. Im gemeinsamen Exzellenzcluster „3D Matter Made to Order” wollen Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) und der Universität Heidelberg die dreidimensionale additive Fertigung auf die nächste Stufe heben: Ziel ist die Entwicklung neuer Technologien, die einen flexiblen, digitalen Druck ermöglichen, der mit Tischgeräten Strukturen von der molekularen bis zur makroskopischen Ebene umsetzen kann.

„Der 3D-Druck bietet gerade im Mikro- und Nanobereich enorme Möglichkeiten. Die Herausforderungen, um diese zu erschließen, sind jedoch ebenso gewaltig“, sagt...

Im Focus: Diamanten, die besten Freunde der Quantenwissenschaft - Quantenzustand in Diamanten gemessen

Mithilfe von Kunstdiamanten gelang einem internationalen Forscherteam ein weiterer wichtiger Schritt in Richtung Hightech-Anwendung von Quantentechnologie: Erstmals konnten die Wissenschaftler und Wissenschaftlerinnen den Quantenzustand eines einzelnen Qubits in Diamanten elektrisch zu messen. Ein Qubit gilt als die Grundeinheit der Quanteninformation. Die Ergebnisse der Studie, die von der Universität Ulm koordiniert wurde, erschienen jüngst in der renommierten Fachzeitschrift Science.

Die Quantentechnologie gilt als die Technologie der Zukunft. Die wesentlichen Bausteine für Quantengeräte sind Qubits, die viel mehr Informationen verarbeiten...

Im Focus: Wasser ist homogener als gedacht

Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1% Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.

Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mobile World Congress: Bundesamt für Strahlenschutz rät zu Handys mit geringem SAR-Wert

22.02.2019 | Veranstaltungen

Unendliche Weiten: Geophysiker nehmen den Weltraum ins Visier

21.02.2019 | Veranstaltungen

Tagung rund um zuverlässige Verbindungen

20.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Jet/Hüllen-Rätsel in Gravitationswellenereignis gelöst

22.02.2019 | Physik Astronomie

Forschergruppe der TH Lübeck untersucht Grundwasserneubildung in Zypern und Jordanien

22.02.2019 | Geowissenschaften

Wissenschaftler forschen an neuer Methode zum Aufbau eines künstlichen Eierstocks

22.02.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics