Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

IPP-Teststand ELISE erzielt Weltrekord

27.02.2015

Nach zwei Jahren Forschungsarbeit wurden im Teststand ELISE des Max-Planck-Instituts für Plasmaphysik (IPP) in Garching bei München jetzt Weltrekord-Werte erreicht: Im erstmals gelungenen Ein-Stunden-Betrieb wurde ein gepulster Teilchenstrahl bislang unerreichter Qualität erzeugt: baumstammdick, homogen, zeitlich stabil und dabei neun Ampere stark. Mit ELISE, der weltweit größten Testanlage ihrer Art, wird die Heizung entwickelt, die das Plasma des internationalen Fusionstestreaktors ITER auf viele Millionen Grad bringen soll. Kernstück ist eine im IPP entwickelte neuartige Hochfrequenz-Ionenquelle, die den energiereichen Teilchenstrahl erzeugt.

Die von dem internationalen Testreaktor ITER (lat.: der Weg) gestellte Aufgabe ist anspruchsvoll: Um das ITER-Plasma auf viele Millionen Grad Celsius aufzuheizen, sollen zwei energiereiche Teilchenstrahlen je 16,5 Megawatt Heizleistung in das 800 Kubikmeter große Plasmavolumen pumpen. Ungefähr türgroß wird der Querschnitt dieser Teilchenstrahlen sein – und damit die heute genutzten Strahlen, die mit etwa tellergroßem Querschnitt und deutlich kleinerer Leistung auskommen, weit hinter sich lassen.


Per Wärmekamera aufgenommenes Bild des ELISE-Kalorimeters, das den Energieinhalt der erzeugten Teilchenstrahlen misst: Hier zeigt einer der Rekordstrahlen seine glühende Signatur.

Foto: IPP

Die Testanlage ITER, die zurzeit in weltweiter Zusammenarbeit in Cadarache in Südfrankreich aufgebaut wird, soll zeigen, dass ein Energie lieferndes Fusionsfeuer möglich ist. Ähnlich wie die Sonne soll ein künftiges Fusionskraftwerk aus der Verschmelzung von Atomkernen Energie gewinnen.

Der Brennstoff – ein Wasserstoffplasma – muss dazu berührungsfrei in einem Magnetfeldkäfig eingeschlossen und auf Zündtemperaturen über 100 Millionen Grad aufgeheizt werden. 500 Megawatt Fusionsleistung soll ITER erzeugen – zehnmal mehr, als zuvor zur Plasmaheizung aufgewendet wurde.

Entwicklungsarbeit im Teststand ELISE

Diese Plasmaheizung wird etwa zur Hälfte die so genannte „Neutralteilchen-Heizung“ übernehmen: Schnelle Wasserstoffatome, die durch den Magnetfeldkäfig hindurch in das Plasma hineingeschossen werden, geben über Stöße ihre Energie an die Plasmateilchen ab. So bringen heutige Heizungen, zum Beispiel an der IPP-Fusionsanlage ASDEX Upgrade in Garching, das Plasma per Knopfdruck auf ein Mehrfaches der Sonnentemperatur.

Die Großanlage ITER stellt jedoch erhöhte Anforderungen: Zum Beispiel müssen die Teilchenstrahlen viel dicker und die einzelnen Teilchen viel schneller sein als bisher, damit sie tief genug in das voluminöse Plasma eindringen können. Anstelle der bisher für die Produktion des Teilchenstrahls genutzten elektrisch positiv geladenen Ionen müssen daher negativ geladene Ionen verwendet werden, die extrem fragil sind. Die dazu im IPP entwickelte Hochfrequenz-Ionenquelle wurde als Prototyp in den ITER-Entwurf aufgenommen. Auch der Auftrag zur Anpassung an die ITER-Anforderungen ging Ende 2012 an das IPP.

Mit dem Teststand ELISE (Extraction from a Large Ion Source Experiment) wurde in den vergangenen zwei Jahren eine Quelle untersucht, die bereits halb so groß ist wie eine spätere ITER-Quelle. Sie erzeugt einen Teilchenstrahl von rund einem Quadratmeter Querschnittsfläche. Mit dem gewachsenen Format mussten die bisherigen technischen Lösungen für das Heizverfahren überarbeitet werden.

Schritt für Schritt ist ELISE damit in neue Größenordnungen vorgedrungen. Kürzlich gelangen nun einstündige Betriebspulse der Ionenquelle, in denen alle drei Minuten für 20 Sekunden ein stabiler und homogener, rund neun Ampere starker Ionenstrahl erzeugt werden konnte. Der Gasdruck in der Quelle und die Menge der zurückgehaltenen Elektronen entsprachen den ITER-Vorgaben – kurz: Weltrekord.

Hintergrund: Die technischen Details

Um Wasserstoffatome beschleunigen zu können, müssen sie zunächst als geladene Teilchen – als positiv oder negativ geladene Ionen – für elektrische Kräfte greifbar werden. Dies geschieht in der Ionenquelle: In Wasserstoffgas eingestrahlte Hochfrequenzwellen ionisieren und zerlegen einen Teil der Wasserstoffmoleküle. Das entstandene Plasma, eine Mischung neutraler Teilchen, negativer Elektronen sowie meist positiv geladener Ionen, strömt auf eine erste gitterförmige Elektrode. Durch die mehreren 100 Öffnungen dieses Gitters werden ebenso viele einzelne Ionenstrahlen aus dem Plasma herausgezogen. Nach der Beschleunigung durch zwei weitere Gitter verschmelzen die fingerdicken Einzelstrahlen schließlich zu einem breiten Gesamtstrahl, dessen Querschnitt bei ELISE rund einen Quadratmeter groß ist.

Sind die Oberflächen der Ionenquelle mit geeignetem Material belegt, mit Cäsium zum Beispiel, dann können die Wasserstoffatome dort Elektronen aufnehmen: So entstehen die für ITER benötigten negativ geladenen Wasserstoffionen. Um die gleichzeitig aus dem Plasma herausgezogenen, aber unerwünschten Elektronen loszuwerden, behindert ein Quermagnetfeld im Plasma ihren Flug zum ersten Gitter. Kleine, in das zweite Gitter eingebaute Permanent-Magnete lenken die Elektronen dann endgültig aus dem Strahl heraus. Die viel schwereren Ionen fliegen dagegen nahezu unbehindert weiter. Nicht nur dieses magnetische Innenleben macht die ELISE-Gitter zu technischen Meisterstücken: Hinzu kommt eine ausgefeilte Wasserkühlung, die trotz der hohen Wärmebelastung während der Heizpulse jede einzelne Öffnung auf hundertstel Millimeter relativ zu ihrem Partner im folgenden Gitter in Position hält.

Damit dies alles funktioniert, müssen zahlreiche Einzelgrößen – zum Beispiel die Hochfrequenzleistung, die Cäsiumkonzentration, die Wandtemperatur, die Gitterspannungen und das Magnetfeld zum Ablenken der Elektronen – genau aufeinander abgestimmt werden. Nur dann erhält man das gewünschte Ergebnis, einen stabilen und homogenen Strahl aus schnellen, negativ geladenen Wasserstoffionen. Damit die schnellen Teilchen später bei ITER ungehindert durch den Magnetfeldkäfig in das Plasma eindringen können, müssen sie zuvor wieder neutralisiert werden.

 Als schnelle Wasserstoffatome schießen sie schließlich in das Plasma hinein und geben ihre Energie an die Plasmateilchen ab.

Wie geht es weiter?

Inzwischen wurde die Ionenquelle erstmals seit Betriebsbeginn wieder geöffnet: Nach der Reinigung der Quelle will man dann mit erhöhter Leistung die vollen Zielwerte erreichen. Das System in Originalgröße wird anschließend das italienische Fusionsinstitut der ENEA in Padua untersuchen und dabei mit dem IPP zusammenarbeiten. Zur Vorbereitung wird hier in den nächsten zwei Jahren das italienische Team trainiert und zugleich die Entwicklung an ELISE weiterlaufen.

Weitere Informationen:

http://www.ipp.mpg.de/de/aktuelles/presse/pi/2014/02_15

Isabella Milch | Max-Planck-Institut für Plasmaphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED
17.10.2019 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Blindgänger mit Laser entschärft: Erfolgreicher Feldversuch zum Projektende
16.10.2019 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen

17.10.2019 | Materialwissenschaften

Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED

17.10.2019 | Physik Astronomie

Dank Hochfrequenz wird Kommunikation ins All möglich

17.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics