Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission

09.08.2018

Langsam, aber effizient

In den letzten 30 Jahren wurden die Wechselwirkungen zwischen intensiven Lasern und Clustern in erster Linie als ein vielversprechender Weg angesehen, um hochenergetische Ionen und Elektronen zu erzeugen.


Die Energieverteilung von Elektronen aus der Wechselwirkung von Argon-Clustern mit intensiven Laserpulsen wird durch langsame Elektronen dominiert (orangene Fläche).

Bernd Schütte


Atomistische Simulation der Laser-induzierten Cluster-Explosion

Bernd Schütte

In überraschendem Gegensatz zu diesem bis heute vorherrschenden Paradigma hat ein Forscherteam nun entdeckt, dass auch eine sehr große Zahl an relativ langsamen Elektronen in diesen Wechselwirkungen erzeugt werden.

Diese niedrigenergetischen Elektronen stellen einen bisher fehlenden Zusammenhang her, um die Prozesse zu verstehen, die ein intensiver Laserpuls in einem Nanopartikel auslöst. Dies ist hochrelevant für die Abbildung von Biomolekülen auf ultrakurzen Zeitskalen.

Wenn ein Nanopartikel einem intensiven Laserpuls ausgesetzt ist, verwandelt er sich in ein Nanoplasma, das sich extrem schnell ausdehnt. Verschiedene Phänomene finden statt, die auf der einen Seite faszinierend sind, auf der anderen Seite aber auch wichtig für Anwendungen. Beispiele sind die Erzeugung hochenergetischer Elektronen, Ionen und neutraler Atome, die effiziente Erzeugung von Röntgenstrahlen, und sogar Kernfusion wurde beobachtet.

Während diese Beobachtungen recht gut verstanden sind, hat eine andere Beobachtung, nämlich die Erzeugung hochgeladener Ionen, Forscher bisher vor ein Rätsel gestellt. Der Grund dafür ist, dass Modellrechnungen eine sehr effiziente Rekombination von Elektronen und Ionen im Nanoplasma vorhergesagt haben, was zu einer drastischen Reduzierung der Ladungszustände der Ionen führen würde.

In einer Forschungsarbeit, die in der aktuellen Ausgabe der renommierten Fachzeitschrift Physical Review Letters veröffentlicht wurde, hat ein internationales Forschungsteam vom Imperial College London, der Universität Rostock, dem Max-Born-Institut, der Universität Heidelberg sowie ELI-ALPS dabei geholfen, dieses Rätsel zu lösen.

Winzige Cluster bestehend aus einigen tausend Atomen wechselwirkten mit ultrakurzen, intensiven Laserpulsen. Die Forscher fanden heraus, dass die große Mehrheit der emittierten Elektronen sehr langsam waren (Abb. 1). Des Weiteren hat sich herausgestellt, dass die niedrigenergetischen Elektronen mit einer Verzögerung im Vergleich zu den hochenergetischen Elektronen emittiert wurden.

Erstautor der Studie Dr. Bernd Schütte, der die Experimente am Imperial College London im Rahmen eines Forschungsstipendiums durchgeführt hat und nun am Max-Born-Institut forscht, sagt: "Viele Faktoren wie z.B. das Erdmagnetfeld beeinflussen die Bewegung langsamer Elektronen, was die Detektion sehr schwierig macht und erklärt, wieso diese Elektronen bisher noch nicht beobachtet wurden. Unsere Beobachtungen waren unabhängig von den spezifischen Cluster- und Laserparametern, und sie helfen uns dabei, die komplexen Prozesse auf der Nanoskala zu verstehen."

Um die experimentellen Beobachtungen zu verstehen, haben Forscher um Prof. Thomas Fennel von der Universität Rostock und dem Max-Born-Institut die Wechselwirkung des intensiven Laserpulses mit dem Cluster simuliert. "Unsere atomistischen Simulationen haben gezeigt, dass die langsamen Elektronen aus einem Zwei-Stufen Prozess resultieren, wobei die zweite Stufe auf einem finalen Schwung beruht, der Forschern bisher entgangen ist", erklärt Fennel.

Zunächst löst der intensive Laserpuls Elektronen aus individuellen Atomen. Diese Elektronen bleiben im Cluster gefangen, da sie stark von den Ionen angezogen werden. Wenn sich diese Anziehung durch das Auseinanderdriften der Partikel während der Clusterexpansion verringert, wird die Bühne für den zweiten wichtigen Schritt bereitet.

Dabei kollidieren schwach gebundene Elektronen mit einem hochangeregten Ion, was ihnen den finalen Schwung gibt, um dem Cluster zu entfliehen. Da diese korrelierten Prozesse sehr schwierig zu simulieren sind, waren die Computerressourcen des Norddeutschen Verbundes für Hoch- und Höchstleistungsrechnen (HLRN) essenziell, um das Puzzle zu lösen.

Die Forscher haben herausgefunden, dass die Emission langsamer Elektronen ein sehr effizienter Prozess ist, der es einer großen Zahl von langsamen Elektronen ermöglicht, dem Cluster zu entfliehen. Eine wichtige Konsequenz daraus ist, dass es sehr viel schwieriger für hochgeladene Ionen ist, Partner-Elektronen zu finden, mit denen sie rekombinieren können.

Viele der Ionen verbleiben daher in hohen Ladungszuständen. Die Entdeckung der langsamen Elektronen kann dabei helfen zu verstehen, warum hochgeladene Ionen in Wechselwirkungen von intensiven Laserpulsen mit Clustern beobachtet werden. Diese Erkenntnisse könnten wichtig sein, da langsame Elektronen eine große Rolle für Strahlenschäden von Biomolekülen spielen, für die die Cluster ein Modell darstellen.

Prof. Jon Marangos vom Imperial College London sagt: "Seit Mitte der 1990er Jahre haben wir an der Emission von energetischen Partikeln (Elektronen und hochgeladene Ionen) von atomaren Clustern in Laserfeldern gearbeitet.

Es ist überraschend, dass bis jetzt die verzögerte Elektronenemission bei viel niedrigeren Energien übersehen wurde. Nun stellt sich heraus, dass dies ein sehr wichtiges Phänomen ist, das für die Mehrheit der emittierten Elektronen verantwortlich ist. Von daher könnte es eine große Rolle spielen, wenn kondensierte Materie oder große Moleküle jeglicher Art mit einem hochintensiven Laserpuls wechselwirken."

Abb. 1: Die Energieverteilung von Elektronen aus der Wechselwirkung von Argon-Clustern mit intensiven Laserpulsen wird durch langsame Elektronen dominiert (orangene Fläche). Die Einfügung zeigt das gleiche Spektrum auf einer logarithmischen Skala, wobei die langsamen Elektronen (rote Linie) und die schnellen Elektronen (rote Linie) gekennzeichnet sind.

Wissenschaftliche Ansprechpartner:

Dr. Bernd Schütte, Tel.: 030 6392 1295
Prof. Dr. Thomas Fennel , Tel.: 030 6392 1245

Originalpublikation:

Bernd Schütte, Christian Peltz, Dane R. Austin, Christian Strüber, Peng Ye, Arnaud Rouzée, Marc J. J. Vrakking, Nikolay Golubev, Alexander I. Kuleff, Thomas Fennel and Jon P. Marangos
"Low-energy electron emission in the strong-field ionization of rare gas clusters"
Physical Review Letters 0031-9007/18/121(6)/063202(6)/ DOI:10.1103/PhysRevLett.121.063202

Saskia Donath | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Nature-Publikation: Forscherinnen und Forscher der TU Dortmund weisen Ausbruch kosmischer Sternexplosion nach
22.11.2019 | Technische Universität Dortmund

nachricht Neue Methode zum Einsatz von Spinwellen in magnetischen Materialien
22.11.2019 | Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forschende entdecken, wie äußere Reize den Auf- und Abbau des Skeletts im Kern von Säugetierzellen steuern

Nicht nur in Muskelzellen spielen sie die Hauptrolle: Die Aktinfilamente sind eines der häufigsten Proteine in allen Säugetierzellen. Die fadenförmigen Strukturen bilden einen wichtigen Teil des Zellskeletts und -bewegungsapparats. Zellbiologinnen und -biologen der Universität Freiburg zeigen nun in Zellkulturen, wie Rezeptorproteine in der Membran dieser Zellen Signale von außen an Aktinmoleküle im Kern weiterleiten, die daraufhin Fäden bilden.

Das Team um Pharmakologe Prof. Dr. Robert Grosse steuert in einer Studie den Auf- und Abbau der Aktinfilamente im Zellkern mit physiologischen Botenstoffen und...

Im Focus: Neuartiges Antibiotikum gegen Problemkeime in Sicht

Internationales Forscherteam mit Beteiligung der Universität Gießen entdeckt neuen Wirkstoff gegen gramnegative Bakterien – Darobactin attackiert die Erreger an einem bislang unbekannten Wirkort

Immer mehr bakterielle Erreger von Infektionskrankheiten entwickeln Resistenzen gegen die marktüblichen Antibiotika. Typische Krankenhauskeime wie Escherichia...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Gewinner ist… Vorankündigung zum 11. Corporate Health Award

22.11.2019 | Förderungen Preise

Erste Liga der Automobilzulieferer

22.11.2019 | Förderungen Preise

Forschende entdecken, wie äußere Reize den Auf- und Abbau des Skeletts im Kern von Säugetierzellen steuern

22.11.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics