Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Innovationsschub durch hochenergetische Femtosekundenlaser

27.07.2012
Forscher des Laser Zentrums Hannover e.V. (LZH) wollen weltweit erstmalig eine 2 μm Femtosekunden-Strahlquelle mit Pulsenergien im μJ-Bereich entwickeln.

Seit annähernd 20 Jahren weiß man um die besonderen Vorzüge ultrakurzer Laserstrahlung. Aufgrund der extremen zeitlichen Verkürzung des Pulses erreicht man sehr hohe Spitzenintensitäten selbst bei geringen Pulsenergien. Die Wirkung ist beachtlich: Man kann Material sehr präzise schneiden und abtragen, ohne es durch Erwärmung zu schädigen.

Diesen Vorteil macht man sich bereits in verschiedenen Anwendungsbereichen zunutze, wie z.B. in der Augenchirurgie. Hornhauttransplantationen mit dem fs-Laser sind seit Jahren gängige Praxis und seit 2011 wird das System bei der Behandlung des Grauen Stars eingesetzt.

Auch in der Industrie profitiert man von den Vorzügen der Ultrakurzpuls-Lasersysteme. Hier führen sie beispielsweise zu deutlich effizienteren Solarzellen oder verbessern die Ausnutzung teurer Wafer in der Chipproduktion.

Durch Erweiterung des Emissionsspektrums eines fs-Lasers in den Spektralbereich 2 µm bei gleichzeitig hohen Pulsenergien will man am LZH jetzt das Tor zu gänzlich neuen Anwendungsfeldern u. a. in der Mikromaterialbearbeitung, der Medizintechnik oder in der Nanotechnologie aufstoßen. Neben den hohen wirtschaftlichen Erfolgsaussichten bietet dieser ‚augensichere‘ Wellenlängenbereich einen weiteren Vorteil: beim Lasereinsatz müssen nur relativ geringe Sicherheitsstandards eingehalten werden – ein ansonsten stark beschränkender und kostenintensiver Aspekt.

Konkretes Ziel der Arbeiten in der Abteilung Laserentwicklung des LZH ist ein kompakter, regenerativer Ultrakurzpuls-Verstärker, der im Wellenlängenbereich um 2 μm mit Pulsenergien von bis zu 50 μJ und Pulsdauern unterhalb von 500 fs emittiert. Die Forscher setzen als Seedlaser einen fs-Oszillator auf der Basis von Thulium-dotierten Fasern mit einer Ausgangsenergie von 1-2 nJ ein, die auf 25 nJ nachverstärkt wird. Im Anschluss an die regenerative Verstärkung erfolgt eine nichtlineare Frequenzkonversion in den Wellenlängenbereich von 3 bis 6 µm in einem optisch parametrischen Generator oder Verstärker (OPG/OPA). Als nichtlineare Kristalle dienen z.B. Galliumarsenid (GaAs) oder Zink Germanium Phosphit (ZGP).

„Unser Endziel ist ein auf dem 2 µm–System basierender fs-Laser, der im mittleren Infrarotbereich emittiert“, erläutert Dr. Dieter Wandt, Leiter der maßgeblich beteiligten Gruppe Ultrafast Photonics. „Für diese Wellenlängen erwarten wir noch enorme Wachstumspotentiale.“ Als ein wichtiges Anwendungsfeld nennt Wandt die Bearbeitung von Polymeren, die man unter Einsatz von IR-Strahlung ohne Zusatz von Additiven schneiden, schweißen oder trennen kann. Für die deutschen Laserhersteller soll das neue Grundlagen-Know-how einen entscheidenden Vorteil im internationalen Wettbewerb um die Lasertechnik der ultrakurzen Pulse liefern.

Die Aktivitäten des LZH sind in das Gesamtverbundprojekt „Konzepte für Ultrakurzgepulste Strahlquellenkonzepte der Nächsten Generation – Next Generation of Ultrafast Sources“ NEXUS eingebunden und werden im Rahmen der Förderinitiative „Ultrakurzpulslaser für die hochpräzise Bearbeitung“ des BMBF bis 2015 gefördert. Nexus-Verbundpartner neben dem hannoverschen Laserinstitut sind die Hochschulen Friedrich-Schiller-Universität Jena, Leibniz Universität Hannover und Ludwig-Maximilians-Universität München.

Kontakt:
Laser Zentrum Hannover e.V. (LZH)
Michael Botts
Hollerithallee 8
D-30419 Hannover
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
Das Laser Zentrum Hannover e.V. (LZH) ist eine durch Mittel des Niedersächsischen Ministeriums für Wirtschaft, Arbeit und Verkehr unterstützte Forschungs- und Entwicklungseinrichtung auf dem Gebiet der Lasertechnik.

Michael Botts | Laser Zentrum Hannover e.V.
Weitere Informationen:
http://www.lzh.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Direkte Abbildung von Riesenmolekülen
24.05.2019 | Max-Planck-Institut für Quantenoptik

nachricht MiLiQuant: Quantentechnologie nutzbar machen
23.05.2019 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Direkte Abbildung von Riesenmolekülen

Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.

Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich....

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

Jubiläumskongress zur Radiologie der Zukunft

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Direkte Abbildung von Riesenmolekülen

24.05.2019 | Physik Astronomie

Antibiotika und ihre Systembiologie

24.05.2019 | Biowissenschaften Chemie

Kinderradiologie: Auf dem Weg zur nächsten technischen Revolution

24.05.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics