Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ingenieure der Universität Magdeburg revolutionieren molekulare Mikroskopie

26.06.2019

Einzelne Moleküle vermessen elektrische Potenziale

Ingenieure der Otto-von-Guericke-Universität Magdeburg haben in Zusammenarbeit mit Kollegen des Forschungszentrums Jülich ein Verfahren entwickelt, die elektrischen Potenziale von Molekülen und molekularen Oberflächen in bisher unerreichter Präzision und Geschwindigkeit zu vermessen.


Mit der sogenannten Raster-Quantenpunkt-Mikroskopie ist es ihnen erstmals gelungen, hochaufgelöste Landkarten molekularer elektrischer Potenziale, also der im Umfeld sämtlicher Materie vorkommenden elektrischen Felder, innerhalb von Minuten zu erstellen.

Die Forschungsergebnisse wurden soeben in der international renommierten Fachzeitschrift Nature Materials veröffentlicht.

„Sämtliche Materie besteht aus positiv geladenen Atomkernen und negativ geladenen Elektronen“, erläutert Prof. Dr.-Ing. Rolf Findeisen vom Institut für Automatisierungstechnik der Universität Magdeburg. „Diese erzeugen elektrische Potenziale. Mit herkömmlichen Verfahren war es bisher kaum möglich, diese kleinräumigen Felder zu vermessen, die für viele Eigenschaften und Funktionalitäten von Stoffen verantwortlich sind.“

Bei der neuentwickelten Raster-Quantenpunkt-Mikroskopie wird ein einzelnes Molekül, der sogenannte Quantenpunkt, auf die Spitze der Nadel eines Rasterkraftmikroskops geheftet. Diese Spitze fährt mit dem Molekül bei Temperaturen nahe dem absoluten Nullpunkt, wie die Nadel eines Plattenspielers, über die Probe und erstellt so Stück für Stück und über Stunden eine zusammenhängende Darstellung der Oberfläche.

Prof. Rolf Findeisen entwickelte gemeinsam mit seinem Doktoranden Michael Maiworm für das neuartige Mikroskopierverfahren einen Regler – einen Algorithmus, der den Abtastvorgang steuert. Der macht die präzise, aber bisher sehr langwierige Vermessung von Potenzialen molekularer Auflösung in wenigen Minuten möglich.

„Mit dem neuen Regler können wir jetzt die gesamte Oberfläche eines Moleküls einfach scannen, wie mit einem normalen Rasterkraftmikroskop“, so Christian Wagner vom Forschungszentrum Jülich. Dies ermöglicht hochauflösende Bilder des Potenzials, die vorher unerreichbar schienen.

Einsatzmöglichkeiten für diese neue ungewöhnlich präzise und schnelle Mikroskopietechnik gebe es viele, führt Michael Maiworm aus, der den Regler maßgeblich im Rahmen seiner von Prof. Findeisen betreuten Dissertation entwickelte.

„Sie reichen von physikalischen Grundlagenfragen über die Halbleiterelektronik - bei der schon ein einzelnes Atom für die Funktionalität entscheidend sein kann - und molekulare chemische Reaktoren bis hin zur Charakterisierung von Biomolekülen wie unsere DNA oder biologische Oberflächen.“

Die Arbeit ist ein Teil einer Kooperation zwischen Magdeburg und Jülich, bei der es um die gezielte und automatisierte Manipulation von Objekten auf der Nanoebene geht. Hierbei erhält die molekulare Spitze eine Doppelfunktion: Sie ist gleichzeitig Messsonde und Werkzeug.

Das eröffnet die Möglichkeit, künftig mittels 3D-Druck Nanostrukturen herzustellen. Denkbar ist beispielsweise die Herstellung elektrischer Schaltkreise bestehend aus einzelnen Molekülen oder von Sensoren molekularer Dimension und Auflösung.

Wissenschaftliche Ansprechpartner:

Prof. Dr.-Ing. Rolf Findeisen, Otto-von-Guericke-Universität Magdeburg, Fakultät für Elektrotechnik und Informationstechnik, Institut für Automatisierungstechnik, Tel.: +49 391 67-58708, E-Mail: rolf.findeisen@ovgu.de

Originalpublikation:

Quantitative imaging of electric surface potentials with single-atom sensitivity
Christian Wagner, Matthew. F. B. Green, Michael Maiworm, Philipp Leinen, Taner Esat, Nicola Ferri, Niklas Friedrich, Rolf Findeisen, Alexandre Tkatchenko, Ruslan Temirov, F. Stefan Tautz Nature Materials (published online 10 June 2019), DOI: 10.1038/s41563-019-0382-8
http://www.nature.com/articles/s41563-019-0382-8

Katharina Vorwerk | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-magdeburg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lichtpulse bewegen Spins von Atom zu Atom
17.02.2020 | Forschungsverbund Berlin e.V.

nachricht Physik des Lebens - Die Logistik des Molekül-Puzzles
17.02.2020 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste Untersuchungsergebnisse zum "Sensations-Meteoritenfall" von Flensburg

17.02.2020 | Geowissenschaften

Lichtpulse bewegen Spins von Atom zu Atom

17.02.2020 | Physik Astronomie

Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen

17.02.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics