Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hybrid-Neuronen-Netzwerke mit 3D-Lithografie möglich

16.04.2019

Netzwerken aus wenigen Neuronenzellen können gezielt künstliche dreidimensionale Strukturen vorgegeben werden. Sie werden dafür elektronisch verschaltet. Dies eröffnet neue Möglichkeiten, Fehler in neuralen Netzwerken besser zu verstehen und technische Anwendungen mit lebenden Zellen gezielter zu steuern. Dies stellt ein Team aus Forschenden aus Greifswald und Hamburg in einer Publikation in der Fachzeitschrift „Advanced Biosystems“ vor.

Eine der zentralen Fragen der Lebenswissenschaften ist, die Funktionsweise des Gehirns zu verstehen. Komplexe Abläufe im Gehirn ermöglichen uns, schnell Muster zu erkennen und damit große Datenmengen auf die wesentliche Information zu reduzieren. Zentral für diese Funktion des Gehirns sind selbstlernende neuronale Netzwerke.


Schemabild einer neuronalen Zelle und Axon durch den Kanal zum Nachbarturm, die mit Patch-Clamp-Technik zur Messung der Aktivität des Neurons kontaktiert wird.

Abbildung: C. Fendler

(Die Fotos können für redaktionelle Zwecke im Zusammenhang mit dieser Pressemitteilung kostenlos heruntergeladen und genutzt werden. Dabei ist der Name des Bildautors zu nennen.)

Diese arbeiten dabei auch noch außerordentlich energieeffizient. Um die enormen Datenmengen zu verarbeiten, die durch äußere Wahrnehmung optisch, akustisch und sensorisch auf unsere Sinne einprasseln, benötigt das Gehirn nur 20 Watt. Das entspricht der Leistung einer Glühbirne.

Die derzeit schnellsten Supercomputer benötigen 20–30 Megawatt. Für einen Supercomputer, der alle 100 Milliarden Neuronen und eine Vielzahl von Synapsen eines menschlichen Gehirns simulieren kann, benötigte man einen eigenen Kraftwerksblock.

Durch die interdisziplinäre Zusammenarbeit von Wissenschaftlern des Center for Hybrid Nanostructures (CHyN) der Universität Hamburg http://chyn.de/, dem Zentrum für Molekulare Neurobiologie Hamburg (ZMNH) https://www.uke.de/kliniken-institute/zentren/zentrum-f%C3%BCr-molekulare-neurob..., dem Universitätsklinikum Hamburg-Eppendorf (UKE) https://www.uke.de/index.html und Prof. Dr. Markus Münzenberg vom Institut für Physik der Universität Greifswald https://physik.uni-greifswald.de/ag-muenzenberg/ ist es erstmals gelungen, die Signale in künstlich strukturierten 3D-Netzwerken von Neuronen zu untersuchen.

Dazu wurden reduzierte Neuronennetzwerke aus nur wenigen lebenden Neuronenzellen verschaltet. Ziel war es, den Zellen beim Wachsen künstliche dreidimensionale Strukturen gezielt vorzugeben. In den Versuchen wurden einzelne Zellen in einen „Turm“ eingebracht.

Die Neuronen wuchsen von dort durch Kanäle zum nächsten „Turm“ und vernetzten sich dort mit dem nächsten Neuron als Netzwerk. Es gelang nachzuweisen, dass die Neuronen Signale abfeuern und leben.

In einfachen Neuronennetzwerken wäre es nun möglich, Funktionen zu verstehen und Fehlabläufe zu diagnostizieren. Was passiert zum Beispiel bei kranken Neuronenzellen oder wie erfolgt die Netzwerksaubildung bei Lernprozessen? Wie kann man Strukturen vorgeben, in denen die Axone geleitet werden, um so das Verknüpfungsmuster vorzugeben?

Interessant sind die Antworten schon jetzt für die Praxis: Neuronengerüste können beispielsweise hilfreich sein, um definierte Grenzflächen zur künstlichen Stimulation zu bilden, zum Beispiel durch flexible Mikro-LED-Cochlea Implantate im Ohr.

Die Ergebnisse sind durchaus auch für Forschungen zur Künstlichen Intelligenz interessant, da es bereits Ansätze gibt, Neuronen als Hardware einzusetzen. Wenn der Ansatz mit Hybrid-Neuronen-Netzwerke weiter perfektioniert wird, könnte anhand vereinfachter Modellsysteme studiert werden, wie Netzwerke mit lebenden, echten Neuronen funktionieren.

„Bereits seit 2016 entwickeln wir an der Universität Greifswald lithografische, dreidimensionale Strukturen mittels Laserlithografie. Die Herausforderung bestand darin, dass nur das Innere der winzigen Turmstrukturen beschichtet werden durfte, damit sich die Zellen dort ansiedeln.

Auch die Kanäle sind im Inneren beschichtet, sodass die Axone geleitet in den 1–2 μm Kanälen (hundertmal dünner als ein Haar) wachsen können. Erste Ergebnisse zeigen das Prinzip und das immense Potenzial der neuen Methode auf“, erklärt Dr. Christian Denker von der Universität Greifswald.

Prof. Dr. Robert Blick vom Center for Hybrid Nanostructures (CHyN) in Hamburg erklärt: „Dies erlaubt funktionale Neuronenzellen gezielt in Nanostrukturen einzubringen. Uns gelang jetzt der Nachweis, dass der Ansatz funktioniert: Die Neuronenzellen siedeln sich an den Netzwerkpunkten an und bilden durch die künstlichen Kanäle Axone aus.“

Verwendet wurden Post-Natal-Maus Cerebellar Granule Neuron Vorläuferzellen, die in Zusammenarbeit mit dem Universitätsklinikum Hamburg-Eppendorf (UKE) gewonnen wurden. Durch sogenannte Patch-Clamp-Messungen an einzelnen Zellen konnte nachgewiesen werde, dass diese Zellen weiterhin biologisch aktiv sind und Signale transmittiert werden.

Weitere Informationen

Der Artikel wird in der nächsten Printausgabe der Zeitschrift Advanced Biosystems erscheinen. Eine Vorabversion ist bereits elektronisch erschienen unter:
Microscaffolds by Direct Laser Writing for Neurite Guidance Leading to Tailor‐Made Neuronal Networks https://onlinelibrary.wiley.com/doi/10.1002/adbi.201800329
C. Fendler, C. Denker, J. Harberts, P. Bayat, R. Zierold, G. Loers, M. Münzenberg and R. H. Blick; Advanced Biosystems, preview (2019).
https://onlinelibrary.wiley.com/doi/10.1002/adbi.201800329

Abb. 1: Rasterelektronenmikroskopie der dreidimensionalen Turmstruktur und mit mikroskopischen Verbindungkanälen für die Neuronen. Die Strukturen wurden durch 3D-Lithografie erzeugt und durch Beschichtung das Polymer so aktiviert, dass es biokompatibel ist. – Aufnahme: C. Fendler
Abb. 2: Vergrößerung eines mit Focussed Ion Beam (FIB) aufgeschnittenen Kanals mit grün eingefärbtem Neuron (Abbildung Rasterelektronenmikroskopie). – Aufnahme: C. Fendler
Abb. 3: Blick in den Reinraum: Lithografie und Entwicklung der dreidimensionalen Nanostrukturen an der Universität Greifswald. Die kleinste Strukturgröße beträgt dabei bis zu 120 Nanometer. – Foto: J. Walowski
Abb. 4: Schemabild einer neuronalen Zelle und Axon durch den Kanal zum Nachbarturm, die mit Patch-Clamp-Technik zur Messung der Aktivität des Neurons kontaktiert wird. – Abbildung: C. Fendler

Die Fotos können für redaktionelle Zwecke im Zusammenhang mit dieser Pressemitteilung kostenlos heruntergeladen und genutzt werden. Dabei ist der Name des Bildautors zu nennen. Download http://www.uni-greifswald.de/pressefotos

Ansprechpartner

Universität Greifswald
Prof. Dr. Markus Münzenberg
Institut für Physik
Telefon +493834 420 4780
https://physik.uni-greifswald.de/ag-muenzenberg/

Universität Hamburg
Prof. Dr. Robert H. Blick
Center for Hybrid Nanostructures
Telefon +49 40 428385672
rblick@physnet.uni-hamburg.de
http://www.chyn.de
http://www.nanomachines.com/nanomachines/Home.html

Jan Meßerschmidt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Atombilder zeigen ungewöhnlich viele Nachbarn für einige Sauerstoffatome
21.10.2019 | Universität Wien

nachricht Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp
18.10.2019 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Atombilder zeigen ungewöhnlich viele Nachbarn für einige Sauerstoffatome

21.10.2019 | Physik Astronomie

Bioprinting: Lebende Zellen im 3D-Drucker

21.10.2019 | Biowissenschaften Chemie

Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

21.10.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics