Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hohle Atome: Die große Wirkung eines unterschätzten Effekts

11.09.2017

Ein über 20 Jahre altes Rätsel der Atomphysik wurde an der TU Wien gelöst. Das Ergebnis soll nun auch helfen, die Wirksamkeit ionisierender Strahlung in der Krebstherapie besser zu verstehen.

Die „hohlen Atome“, die in den Labors der TU Wien hergestellt werden, sind äußerst exotische Objekte. Ihre Elektronen befinden sich in einem Zustand extrem hoher Energie (sogenannten Rydbergzuständen), doch wenn man sie durch ein anderes Material hindurchschießt, wird diese Energie innerhalb von Femtosekunden (Millionstel einer Milliardstelsekunde) abgegeben.


Wenn ein hochgeladenes Ion (Mitte) zwischen den Kohlenstoffatomen der Graphen-Schicht hindurchfliegt, kann es Energie abgeben, die dann auf mehrere Kohlenstoffatome verteilt wird.

TU Wien

Lange wurde spekuliert, wie das so rasch geschehen kann. Experimente mit Xenon-Ionen und dem Kohlenstoff-Material Graphen zeigen nun, dass dafür ein bisher unterschätzter Effekt verantwortlich ist – der sogenannte „Interatomare Coulomb-Zerfall“.

Die Untersuchung dieses Effekts spielt auch für unsere Gesundheit eine wichtige Rolle: Wenn man biologisches Material bestrahlt, kann der interatomare Coulomb-Zerfall zu DNA-Brüchen führen. Publiziert wurden diese Ergebnisse nun im Fachjournal „Physical Review Letters“.

Hohle Atome

Extreme Bedingungen werden in den Labors der TU Wien erzeugt: In einer Ionenfalle entreißt man zunächst einzelnen Atomen unter enormen Energieaufwand eine große Zahl von Elektronen, übrig bleibt ein hochgeladenes Ion. Wenn man ein solches Ion auf eine Oberfläche schießt, holt es sich die fehlenden Elektronen von dort wieder zurück.

Allerdings befinden sich diese Elektronen dann in einem Zustand hoher Energie, in einer äußeren Elektronenschale, weit entfernt vom Atomkern – nicht wie normalerweise möglichst weit innen, in einem Zustand niedriger Energie. Wenn sich viele Elektronen in den äußeren Schalen aufhalten und die inneren Elektronenzustände leer sind, spricht man von einem „hohlen Atom“.

„Sobald diese hohlen Atome aber in den Festkörper eintreten, etwa wenn man sie durch eine dünne Schicht hindurchschießt, ändert sich das schlagartig“, erklärt Richard Wilhelm, aus dem Team von Prof. Friedrich Aumayr am Institut für Angewandte Physik der TU Wien. „Die hochangeregten Elektronen regen sich ab und wechseln dabei in einen Zustand niedriger Energie – und das geschieht erstaunlich schnell, sodass man bisher nicht wirklich erklären konnte, welcher Prozess dafür verantwortlich ist.“

„Die üblichen Mechanismen, mit denen Elektronen normalerweise ihre Energie abgeben können, kommen in diesem Fall nicht in Frage, weil sie einfach zu langsam ablaufen“, sagt Friedrich Aumayr. „Man führte daher verschiedene Ad-hoc-Hypothesen ein, um dieses erstaunliche Phänomen doch zu erklären, aber eine wirklich befriedigende Antwort konnte niemand finden.“

Xenon und Graphen

Das Team der TU Wien ging dem Phänomen nun gemeinsam mit dem Helmholtz-Zentrum Dresden-Rossendorf auf den Grund: Man verwendete schwere, extrem stark ionisierte Atome – dreißigfach positiv geladenes Xenon – und feuerte sie auf Graphen, das dünnste Material der Welt, das bloß aus einer einzigen Schicht von Kohlenstoffatomen besteht. Die Zeit, die ein Xenon-Ion benötigt, um das Graphen zu durchdringen, beträgt bloß eine Femtosekunde, doch dieser ultrakurze Kontakt reicht aus, um die Verteilung der Elektronen völlig zu verändern.

Wie das Forschungsteam nun zeigen konnte, liegt das an einem bisher kaum beachteten Effekt – dem interatomaren Coulomb-Zerfall. Dabei wird die Energie eines einzelnen Elektrons einfach auf mehrere andere Elektronen benachbarter Atome übertragen: Das hochgeladene Xenon-Atom tritt durch die Graphen-Schicht und kommt dort in engen Kontakt mit mehreren Kohlenstoff-Atomen gleichzeitig. Die hohe Energie eines Elektrons aus dem Xenon-Ion wird abgegeben, dafür verlassen gleich mehrere Elektronen im Graphen ihren angestammten Platz und fliegen davon – allerdings jedes nur mit relativ geringer Energie.

Genau deshalb ist dieser eher exotische Prozess auch für die Biologie interessant: Zu solchen interatomaren Coulomb-Zerfällen kann es nämlich kommen, wenn durch ionisierende Strahlung (etwa in der Krebstherapie mit Gamma-, Elektronen- oder Ionenstrahlung) ein inneres Elektron aus einem Atom herausgeschlagen und damit das Atom in einem hochangeregten (hohlen) Zustand zurückgelassen wird.

Auch in diesem Fall kann die Energie auf mehrere benachbarte Atome verteilt werden, viele langsame Elektronen werden emittiert. Das kann die Ursache für DNA-Einzel- und Doppel-Strang-Brüche sein. Während im normalen menschlichen Gewebe dadurch Erbschäden und Krebserkrankungen auftreten, kann dieser Effekt in der Strahlentherapie durchaus sehr positive Wirkung entfalten, indem er die Krebszellen besonders effektiv schädigt.

Durch die Erkenntnis, dass interatomare Coulomb-Zerfälle auch bei hohlen Atomen eine wichtige Rolle spielen, ergeben sich nun neue Wege, sie zu erforschen, und auch für die Biologie relevante Ergebnisse zu erzielen.

Neben der TU Wien und dem Helmholtz-Zentrum Dresden-Rossendorf waren auch die Universität Duisburg-Essen, das BioISI in Lissabon und die Copernicus-Universität in Torun (Polen) am Projekt beteiligt. Richard Wilhelm, der Erstautor der Studie, war während der Forschungsarbeiten an der TU Wien beschäftigt, arbeitet derzeit am Helmholtz-Zentrum in Dresden-Rossendorf und wird im Oktober an die TU Wien zurückkehren.

Originalpublikation:
R.A. Wilhelm, E. Gruber, J. Schwestka, R. Kozubek, T.I. Madeira, J.P. Marques, J. Kobus, A.V. Krasheninnikov, M. Schleberger, and F. Aumayr; Interatomic coulombic decay - the mechanism for rapid de-excitation of hollow atoms; Physical Review Letters 119 (2017) 103401
http://dx.doi.org/10.1103/PhysRevLett.119.103401

Rückfragehinweis:
Prof. Friedrich Aumayr
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstr. 8, 1040 Wien
T: +43-1-58801-13430
friedrich.aumayr@tuwien.ac.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2017/hohleatome Bilderdownload

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wuppertaler Forscher messen vom Weltraum aus die Temperatur der oberen Atmosphäre
18.01.2019 | Bergische Universität Wuppertal

nachricht Wie Moleküle im Laserfeld wippen
17.01.2019 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Smarte Sensorik für Mobilität und Produktion 4.0 am 07. Februar 2019 in Oldenburg

18.01.2019 | Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

Erstmalig in Nürnberg: Tagung „HR-Trends 2019“

17.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zeitwirtschafts- und Einsatzplanungsprozesse effizient und transparent gestalten mit dem Workforce Management System der GFOS

18.01.2019 | Unternehmensmeldung

Der Schlaue Klaus erlaubt keine Fehler

18.01.2019 | Informationstechnologie

Neues Verfahren zur Grundwassersanierung: Mit Eisenoxid gegen hochgiftige Stoffe

18.01.2019 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics