Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Höhere Energien für laserbeschleunigte Teilchen möglich

06.06.2012
Für die Krebstherapie mit geladenen Teilchen wie Protonen könnten in Zukunft kompakte Laserbeschleuniger eingesetzt werden, wenn es gelingt, Protonen mit sehr hohen Energien zu erzeugen.
Physiker vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) lenkten das Licht des Hochleistungslasers DRACO sowohl senkrecht als auch schräg auf eine dünne Metallfolie und konnten so erstmals zeigen, dass die beschleunigten Protonen der Richtung des Laserlichts folgen. Indem sie diese Daten in ein gängiges Modell der Laser-Teilchen-Beschleunigung übertragen, rücken bisher unerreichbar hohe Protonenenergien in greifbare Nähe. Die Ergebnisse erscheinen jetzt in der Fachzeitschrift „Nature Communications“.

Die intensiven und ultrakurzen Lichtpulse des Hochleistungslasers DRACO kann man sich als etwa 10 Zentimeter große Scheiben vorstellen, die so dünn wie ein einfaches Blatt Papier sind. Wird eine dieser Lichtscheiben fokussiert und trifft auf eine Metallfolie, reißen die immens hohen elektrischen und magnetischen Kräfte negativ geladene Elektronen aus der Folie heraus, welche ihrerseits positiv geladene Protonen von der Folienoberfläche weg beschleunigen. Bisher waren viele Experten der Meinung, dass kommerziell verfügbare Geräte wegen der kurzen Laserpulse kaum für den zukünftigen Einsatz in der Krebstherapie tauglich seien. Die erreichbare Energie der beschleunigten Protonen gilt als zu niedrig. Die nun veröffentlichten Ergebnisse aus dem HZDR zeigen erstmalig, dass Protonen mit den für die Krebstherapie erforderlichen Energien prinzipiell auch von einem Kurzpuls-Laser stammen können. Dazu haben die Dresdner Forscher den Prozess der Teilchenbeschleunigung sehr genau studiert.
Neues Zweiphasen-Modell für laserbeschleunigte Teilchen

Ein senkrecht auf eine dünne Metallfolie gerichteter Lichtpuls aus dem DRACO-Laser beschleunigt Elektronen und damit auch Protonen ebenfalls senkrecht zur Folienoberfläche, genau so, wie gängige Modelle es vorhersagen. Anders bei einem verkippten Laserpuls. Wenn man die Lage der hauchdünnen Lichtscheibe schräg zur Bewegungsachse neigt, geschieht in der ersten Phase der Teilchenbeschleunigung etwas Unvorhergesehenes. Die Elektronen spüren die Drehung der Lichtscheibe und folgen der Richtung, in der das Licht zuerst auf die Folie trifft. Aber besser noch, auch Protonen werden entlang dieser Richtung beschleunigt und, im Gegensatz zu den Elektronen, behalten sie diese auch bei. Diese erstmalige Beobachtung der Richtungsabhängigkeit gestattet den Dresdner Physikern auch einen direkten Blick auf den eigentlichen Beschleunigungsprozess.
„Die Elektronen befinden sich in der ersten Beschleunigungsphase nur in einem äußerst kleinen Abstand zur Folie. Kaum drückt der kurze Laserpuls sie durch die Folie, schwingen sie schon wieder zurück, weil die Folie positiv geladen ist. Auch deshalb war es für uns sehr überraschend, dass nicht nur die Elektronen der Lichtbewegung folgen, sondern auch die Protonen die bisher noch nie gesehene Richtungsabhängigkeit zeigen.“, so Doktorand und Hauptautor der aktuellen Veröffentlichung Karl Zeil. Er konnte eine weitere Besonderheit aufdecken, die nur bei superkurzen Laserpulsen vorkommt: Die Anfangsphase ist entscheidend für den gesamten Prozess der Beschleunigung. In den ersten 30 Femtosekunden – das ist der Millionste Teil einer Milliardstel Sekunde und entspricht der Länge des Laserpulses – ist die Beschleunigung äußerst effizient. Nach der kurzen und effizienten Beschleunigungsphase folgt eine längere Expansionsphase, in der sich eine gleichmäßige und symmetrische Plasmawolke ausbildet. Die Protonen haben in der ersten Phase jedoch schon so viel Energie gewonnen und sind damit so schnell geworden, dass sie insgesamt zu höheren Energien gelangen, als gängige Modelle dies vorhersagen würden.

Wie genau die schnellen Elektronen um die Folie oszillieren und so die Protonen beschleunigen, zeigen HZDR-Forscher auch mit Hilfe von Simulationen. Karl Zeil: „Experimente und Simulationen stimmen sehr gut überein. Wir können mit den gewonnenen Daten nun die vorhandenen Expertenmodelle erweitern. In der Konsequenz heißt dies, dass ultrakurz gepulste Laser wie unser DRACO-Laser doch in der Lage sein könnten, Protonen mit ausreichend hoher Energie für den zukünftigen Einsatz in der Krebstherapie zu erzeugen. Dass uns dieser Nachweis gelungen ist, freut und motiviert uns sehr.“

DRACO wird erweitert, PENELOPE kommt hinzu

Der DRACO-Laser erreicht heute eine Leistung von 150 Terawatt – das entspricht der Leistung aller Kraftwerke auf der Welt –, allerdings jeweils für einen Zeitraum von 30 Femtosekunden. Die Laserphysiker im Helmholtz-Zentrum Dresden-Rossendorf wollen DRACO auf 500 Terawatt erweitern und bauen gerade an einem Petawatt-Lasersystem mit Namen PENELOPE. Als moderne Beschleunigertechnologie hat die Teilchenbeschleunigung durch Licht erheblichen Vorteile im Vergleich zu konventionellen Anlagen: Die Beschleunigungsstrecke ist um Größenordnungen kürzer und die Kosten für solche Anlagen sind potentiell niedriger. Derzeit baut das gemeinsam von den Kooperationspartnern HZDR, Universitätsklinik und TU Dresden getragene OncoRay-Zentrum eine moderne Protonentherapie-Anlage auf dem Gelände des Universitätsklinikums auf. Die Anlage soll zur Krebsforschung und -therapie genutzt werden und erstmals wird hier neben einem konventionellen Protonenbeschleuniger der Prototyp eines Hochleistungslasers zum Einsatz kommen.
Publikation:
K. Zeil u.a., “Direct observation of prompt pre-thermal laser ion sheath acceleration, in: Nature Communications, 6. Juni 2012, DOI 10.1038/ncomms1883
Weitere Informationen:
Prof. Ulrich Schramm | Karl Zeil
Institut für Strahlenphysik im HZDR
Tel. 0351 260-2471 | -2614
u.schramm@hzdr.de | k.zeil@hzdr.de

Pressekontakt
Dr. Christine Bohnet
Pressesprecherin
Tel. 0351 260-2450 oder 0160 969 288 56
c.bohnet@hzdr.de | www.hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Materie, Gesundheit und Energie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie verhält sich Materie unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
• Wie können Tumorerkrankungen frühzeitig erkannt und wirksam behandelt werden?
• Wie nutzt man Ressourcen und Energie effizient und sicher?

Zur Beantwortung dieser wissenschaftlichen Fragen werden fünf Großgeräte mit teils einmaligen Experimentiermöglichkeiten eingesetzt, die auch externen Nutzern zur Verfügung stehen.

Hochleistungslaser sind eine vielversprechende und kompakte Quelle für Protonen, etwa für die zukünftige Krebstherapie. Am DRACO-Laser zeigen HZDR-Physiker erstmals, dass Protonen in der ersten Beschleunigungsphase sehr effizient Energie aufnehmen. Karl Zeil/Nature Communications

Das HZDR ist seit 1.1.2011 Mitglied der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands. Es hat vier Standorte in Dresden, Leipzig, Freiberg und Grenoble und beschäftigt rund 900 Mitarbeiter – davon ca. 400 Wissenschaftler inklusive 140 Doktoranden.

Dr. Christine Bohnet | Helmholtz-Zentrum
Weitere Informationen:
http://www.hzdr.de/
http://dx.doi.org/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht InSight: Touchdown auf dem Mars
19.11.2018 | Max-Planck-Institut für Sonnensystemforschung

nachricht Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert
19.11.2018 | Universität Paderborn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Gen-Radiergummi: Neuer Behandlungsansatz bei chronischen Erkrankungen

19.11.2018 | Biowissenschaften Chemie

Mit maschinellen Lernverfahren Anomalien frühzeitig erkennen und Schäden vermeiden

19.11.2018 | Informationstechnologie

Neuer Stall ermöglicht innovative Forschung für tiergerechte Haltungssysteme

19.11.2018 | Agrar- Forstwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics