Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochzeit von Topologie und Magnetismus in einem Weyl Halbmetall

06.08.2018

Topologische Ordnung ist eine neuartige Klassifizierung von Materialien anhand ihrer Quantenstruktur, welche zu der Entdeckung von bisher unentdeckten physikalischen Eigenschaften führt, die man sonst eher in der Astro- oder Hochenergiephysik gesucht hat. Diese Effekte treten verstärkt in Materialien auf, die aus schweren Elementen wie Bismut oder Zinn bestehen, wo relativistische Effekte eine Rolle spielen. Neben der traditionellen Einordnung in Isolatoren und Metalle, führt dies zu Materialklassen wie triviale and topologischen Isolatoren sowie zu trivialen, Weyl und Dirac Halbmetallen.

Die topologischen Weyl und Dirac Halbmetalle sind durch lineare, sich kreuzende Energie-Impuls Beziehungen für Ladungsträger gekennzeichnet, die folglich als masselose Ladungsträger beschrieben werden können, so wie man sie schon vom Graphen kennt.


Hochzeit von Topologie und Magnetismus in einem Weyl Halbmetall

MPI CPfS

Die Eigenschaften von Weyl und Dirac Halbmetallen lassen sich z. B. im elektrischen Stromfluss durch diese Materialien nachweisen. Dafür müssen sich die Kreuzungspunkte nahe der Fermi Energie befinden, der Energie, bis zu welcher das Material mit Ladungsträgern gefüllt ist und die daher für die Eigenschaften des Materials verantwortlich ist.

Bisher wurden topologische Effekte nur in nichtmagnetischen Materialien beobachtet. Dabei kann man diese aufgrund des Magnetismus in magnetischen Materialien noch häufiger erwarten als in nichtmagnetischen Materialien.

Das liegt im Zusammenspiel zwischen Symmetrie, relativistischen Effekten und der magnetischen Struktur, was prinzipiell eine breite Variation von topologischen Phasen ermöglicht. Mehr noch, die Topologie kann über die sogenannte Berry Krümmung regelrecht designt werden. Die Berry Krümmung ist ein mathematischer Begriff, der die quantenmechanische Verschränkung des Valenzbandes mit dem Leitungsband beschreibt.

Ein prominentes Beispiel ist die Kreuzung des s-Leitungsbandes mit dem p-Valenzband, wie man es in Bismut-Verbindungen als “inertes Elektronenpaar” kennt. Beispiele für kürzlich beobachtete Eigenschaften in Weyl Halbmetallen sind die chirale Quantenanomalie, welche für den Pionen Zerfall in der Hochenergiephysik formuliert wurde, und die gravitationelle Anomalie aus der Astrophysik.

Um die Weyl-Kreuzungspunkte in der elektronischen Struktur von Halbmetallen zu beobachten, benötigt man normalerweise eine Symmetriebrechung in der Anordnung von Atomen im Kristall. Magnetismus hat dieselbe Konsequenz. Bisher konnte kein magnetisches Weyl Halbmetall mit Kreuzungspunkten nahe der Fermi Energie experimentell nachgewiesen werden.

In der im Fachmagazin „Nature Physics“ veröffentlichten Studie haben Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe (MPI CPfS), in Kooperation mit der TU Dresden und anderen internationalen Forschungseinrichtungen, nun Evidenz für Weyl Physik in dem magnetischen Shandit Co3Sn2S2 gefunden. Parallel mit dieser Studie wurde ein Artikel eines japanischen Teams über Weyl Physik in Co2MnGa, einer magnetischen Heusler Verbindung, für die Prof. Felsers Gruppe vom MPI CPfS Weyl Punkte an der Fermi Energie vorhergesagt haben, veröffentlicht.

Das wesentliche atomare Strukturelement der Familie der Shandite sind quasi zweidimensionale Kagome Netze. Co3Sn2S2 ist die spannendste Verbindung mit der höchsten magnetischen Übergangstemperatur, in der die magnetischen Momente senkrecht zur Kagome Ebene ausgerichtet sind. Diese Eigenschaften sind nach heutiger Erkenntnis eine gute Voraussetzung für interessante Quanteneffekte in magnetischen Materialien wie den Quantenanomalen Hall (QAH) Effekt, der 2013 bei sehr tiefen Temperaturen entdeckt wurde.

Die Realisierung des QAH Effekts bei Raumtemperatur würde neue Computer-technologien wie z.B. Quantencomputer ermöglichen. Unsere Strategie zur Realisierung eines QAH Effekts ist (i) die Suche nach quasi-zweidimensionalen magnetischen Materialien mit topologischen Bandstrukturen nahe der Fermi Energie und (ii) deren Herstellung als dünne Filme oder in atomaren Monolagen.

Die Messung des Hall Winkels (große anomale Hall Leitfähigkeit bei kleiner Ladungsträgerkonzentration) neben den magnetischen Eigenschaften ist ein erster wichtiger Schritt zur experimentellen Identifizierung guter Kandidaten. Die Bedingungen sind in Co3Sn2S2 und auch in Co2MnGa weitgehend erfüllt. Co2MnGa hat die höhere magnetische Übergangstemperatur, ist aber eher ein Metall als ein Halbmetall.

Co3Sn2S2 weist einen solchen großen anomalen Hall Effekt und einen großen Hall Winkel bis zu 150 K auf. Entsprechend finden sich Weyl Kreuzungspunkte nahe der Fermi Energie. Zusätzlich konnte auch die chirale Anomalie als experimentelle Signatur eines Weyl Halbmetalls nachgewiesen werden. Unsere Arbeit zeigt damit einen klaren Weg zum QAH bei höheren Temperaturen in einer neuen Familie von topologischen Magneten auf.

Das Max-Planck-Institut für Chemische Physik fester Stoffe (MPI CPfS) in Dresden forscht mit dem Ziel, neue Materialien mit ungewöhnlichen Eigenschaften zu entdecken und zu verstehen.

Chemiker und Physiker, Synthetiker, Experimentatoren und Theoretiker untersuchen gemeinsam, wie sich die chemische Zusammensetzung, die Anordnung der Atome sowie äußere Kräfte auf die magnetischen, elektronischen und chemischen Eigenschaften der Verbindungen auswirken. Dazu wenden sie die modernsten Instrumente und Methoden an.

Neue Quantenmaterialien, -effekte und Materialien für Energieumwandlung sind das Ergebnis dieser interdisziplinären Zusammenarbeit.

Das MPI CPfS (www.cpfs.mpg.de) ist Teil der Max-Planck-Gesellschaft und wurde 1995 in Dresden gegründet. Es beschäftigt rund 280 Mitarbeiterinnen und Mitarbeiter, davon etwa 180 Wissenschaftlerinnen und Wissenschaftler inklusive 70 Promovierende.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Claudia Felser; Enke Liu, PhD

Originalpublikation:

Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal, Nature Physics, https://doi.org/10.1038/s41567-018-0234-5

Weitere Informationen:

http://www.cpfs.mpg.de

Dipl.-Übers. Ingrid Rothe | Max-Planck-Institut für Chemische Physik fester Stoffe

Weitere Berichte zu: Anomalie Fermi Halbmetall MPI Magnetismus Max-Planck-Institut Topologie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics