Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochaufgelöste Bilder in drei Dimensionen

13.04.2017

Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) stellen eine neue Mikroskopiemethode vor, die dreidimensionale Fluoreszenzbilder biologischer Proben in hoher Auflösung und Geschwindigkeit liefert.

Für die detaillierte Abbildung zellulärer Strukturen und Zellorganellen nutzen Wissenschaftlerinnen und Wissenschaftler zunehmend neue hochauflösende Mikroskopiemethoden, die die physikalisch mögliche Auflösungsgrenze scheinbar überwinden. Viele dieser Methoden beleuchten die Proben mit hoher Lichtintensität. Dadurch treten bei empfindlichen Untersuchungsobjekten, wie lebenden Zellen, unerwünschte Veränderungen auf oder es kommt zum Absterben der Zellen.


Die Mikroskopieaufnahmen zeigen Aktinfilamente in einer Endothelzelle aus einer Rinderpulmonalarterie unter strukturierter Beleuchtung. Im Bild rechts wurde Licht, das nicht aus dem Fokuspunkt stammt,

rechnerisch entfernt und damit die Auflösung verbessert. Maßstab: 2 µm; Quelle: Leibniz-IPHT

Fluoreszenzmikroskopieverfahren, die nach dem Prinzip der optischen Photonenzuweisung arbeiten, erreichen eine gute Auflösung und hohe Detektionsempfindlichkeit mit viel geringeren Lichtintensitäten. Sie konzentrieren das von der Probe ausgestrahlte Licht besser auf dem Detektor.

Allerdings liefert die Methode nur in einer Ebene gute Auflösung. Prof. Rainer Heintzmann und seinem Doktoranden Stephan Roth vom Leibniz-IPHT ist es nun gelungen, scharfe Bilder in drei Dimensionen zu erzeugen. Sie veröffentlichten ihre Ergebnisse im Fachmagazin „Methods and Applications in Fluorescence“, das den Artikel zu einem der Highlights des vergangenen Jahres kürte.

Rainer Heintzmann, der als Professor für Physikalische Chemie an der Friedrich-Schiller-Universität Jena und Abteilungsleiter am Leibniz-IPHT Verfahren zur hochauflösenden Bildgebung biologischer Proben erforscht, beschreibt die Methode. „Bei konventionellen Laser-Scanning-Mikroskopen rastert ein fokussierter Laserstrahl die Probe in zwei Raumrichtungen mittels beweglicher Spiegel ab.

Dieses Anregungslicht bringt die fluoreszierenden Moleküle der Probe dazu Licht auszusenden. Hinter einer Lochblende fängt ein Detektor die emittierten Photonen in der sogenannten Zwischenbildebene ein. Die erhaltenen Intensitätswerte werden der jeweiligen Anregungsposition zugeordnet, gespeichert und anschließend zum resultierenden Bild zusammengesetzt.

Um bei herkömmlichen Mikroskopen eine Auflösungserhöhung zu erzielen, müssen wir die Lochblende sehr klein wählen, was zu einem enormen Lichtverlust führt. Bei der optischen Photonenzuweisung verkleinern wir hingegen das Zwischenbild in der Lochblenden-Ebene mit Hilfe optischer Linsen um einen Faktor 2. Mit Hilfe der Scan-Spiegel werden anschließend die Intensitätswerte einer Position zugewiesen, an der sich das Molekül am wahrscheinlichsten befindet. Nach dem Scannen der gesamten Probe erhalten wir ein Bild mit etwa 40 Prozent höherer Auflösung ohne das Photonen verloren gehen.“

Die hohe Auflösung beschränkt sich bisher auf die horizontale Ebene, die der Laser in der Probe abrastert. Insbesondere dickere Untersuchungsobjekte erscheinen verrauscht, da auch Licht, das von außerhalb dieser Ebene stammt, detektiert wird. Um die Auflösung entlang der optischen Achse, also in der dritten Raumrichtung, zu erhöhen, nutzt Stephan Roth einen weiteren optischen Trick. „Wir unterdrücken das Licht, welches von Molekülen außerhalb des Fokus ausgesandt wird, indem wir die Probe in einem bestimmten Muster beleuchten. Mittels eines Computeralgorithmus können wir die Photonen, die nicht aus dem Fokuspunkt stammen, identifizieren und vom richtigen Signal abziehen.“ so der Physiker und Erstautor der Studie.

Mit der Kombination aus optischer Photonenzuweisung und strukturierter Beleuchtung konnten die Forscher die benötigte Zeit und Lichtdosis für dreidimensionale hochaufgelöste Fluoreszenzbilder von Zellen reduzieren. Damit hat die Methode das Potential konfokale Fluoreszenzmikroskopie als Standarduntersuchungsverfahren abzulösen. Sein Forschungsziel beschreibt Heintzmann so: „Mit Hilfe detaillierterer und schnellerer Visualisierungsmethoden wollen wir zusammen mit Partnern aus Biologie und Medizin die Funktionsabläufe in Zellen weiter aufklären.“

Weitere Informationen:

http://iopscience.iop.org/journal/2050-6120/page/highlights-of-2016

Dr. Anja Schulz | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht VLT macht den präzisesten Test von Einsteins Allgemeiner Relativitätstheorie außerhalb der Milchstraße
22.06.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Neue Phänomene im magnetischen Nanokosmos
22.06.2018 | Max-Planck-Institut für Intelligente Systeme

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics