Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heißes Gas füttert die Spiralarme der Milchstraße

14.01.2020

Ein internationales Forschungsteam, mit wesentlicher Beteiligung von Astronomen des Max-Planck-Instituts für Astronomie (MPIA), hat wichtige Erkenntnisse darüber gewonnen, woher das Material in den Spiralarmen der Milchstraße stammt, aus dem sich letztendlich neue Sterne formen. Durch die Analyse von Eigenschaften des galaktischen Magnetfelds konnten sie zeigen, dass das dünn verteilte sogenannte Warme Ionisierte Medium (WIM), in das die Milchstraße eingebettet ist, sich in der Nähe eines Spiralarms verdichtet. Während es allmählich abkühlt, dient es als Nachschub für das kältere Material aus Gas und Staub, das die Sternentstehung füttert.

Die Milchstraße ist eine Spiralgalaxie, eine scheibenförmige Sterneninsel im Kosmos, in der sich die meisten hellen und jungen Sterne in Spiralarmen anhäufen.


Ausschnitt der THOR-Durchmusterung in der Nähe des Sagittariusarms der Milchstraße.

Bild: J. Stil/University of Calgary/MPIA


Falschfarbendarstellung der Radioemission in der Milchstraße aus der THOR-Durchmusterung.

Bild: Y. Wang/MPIA

Dort entstehen sie aus dem dichten Interstellaren Medium (ISM), das aus Gas (insbesondere Wasserstoff) und Staub (mikroskopische Körper mit hohen Anteilen an Kohlenstoff und Silizium) besteht und sich auf Bildern als dunkles Band vor dem Sternenhintergrund abhebt.

Damit stetig neue Sterne entstehen können, muss laufend Material in die Spiralarme gespült werden, welches den Vorrat an Gas und Staub wieder auffüllt.

Eine Gruppe von Astronomen der Universität Calgary in Kanada, des Max-Planck-Instituts für Astronomie (MPIA) in Heidelberg und anderen Forschungseinrichtungen konnte nun zeigen, dass der Nachschub von einer deutlich heißeren Komponente des ISM stammt, die gewöhnlich die gesamte Milchstraße einhüllt.

Dieses Warme Ionisierte Medium (WIM) hat eine mittlere Temperatur von 10,000 Grad. Energiereiche Strahlung von heißen Sternen führt dazu, dass das Wasserstoffgas des WIM größtenteils ionisiert ist.

Die Ergebnisse lassen darauf schließen, dass das WIM sich in einem schmalen Bereich nahe eines Spiralarms verdichtet und allmählich unter Abkühlung hineinfließt.

Dem dichten WIM auf die Spur gekommen sind die Wissenschaftler durch die Vermessung der sogenannten Faradayrotation, einem Effekt, der nach dem englischen Physiker Michael Faraday benannt ist. Dabei ändert sich die Polarisationsrichtung von linear polarisierter Radiostrahlung, wenn sie durch ein Plasma (ionisiertes Gas) läuft, das von einem Magnetfeld durchzogen ist.

Man spricht von polarisierter Strahlung, wenn das elektrische Feld nur in einer Ebene schwingt. Gewöhnliches Licht ist nicht polarisiert. Das Ausmaß der Richtungsänderung der Polarisation hängt zudem von der beobachteten Wellenlänge ab.

In der vorliegenden Studie, die kürzlich in der Fachzeitschrift The Astrophysical Journal Letters veröffentlicht wurde, konnten die Astronomen ein ungewöhnlich starkes Signal in einem eher unscheinbaren Bereich der Milchstraße ermitteln, der sich unmittelbar an der Seite des Sagittariusarms der Milchstraße anschmiegt, die dem Galaktischen Zentrum zugewandt ist.

Der Spiralarm selber sticht in den Bilddaten durch starke Radiostrahlung heraus, die von eingebetteten heißen Sternen und Supernovaüberreste erzeugt wird. Die stärkste Verschiebung der Polarisation findet sich jedoch außerhalb dieser markanten Zone.

Daraus folgern die Astronomen, dass die erhöhte Faradayrotation nicht innerhalb dieses aktiven Teils des Spiralarms entspringt. Demnach stammt es von verdichtetem WIM, welches wie das Magnetfeld zu einer weniger offensichtlichen Komponente des Spiralarms gehört.

Die Analyse basiert auf der THOR-Durchmusterung (The HI/OH Recombination Line Survey of the Milky Way), die seit einigen Jahren am MPIA erstellt und in der ein großer Bereich der Milchstraße bei mehreren Radiowellenlängen beobachtet wird.

Polarisierte Strahlungsquellen wie weit entfernte Quasare oder Neutronensterne dienen als „Sonden“ zur Bestimmung der Faradayrotation. Somit können die Astronomen nicht nur die ansonsten schwierig zu vermessenden Magnetfelder in der Milchstraße ausfindig machen, sondern die Struktur und Eigenschaften des heißen Gases ergründen.

„Das starke Signal in einem eher unauffälligen Bereich der Milchstraße hat uns sehr überrascht“, sagt Henrik Beuther vom MPIA, der das THOR-Projekt leitet. „Diese Ergebnisse zeigen uns, dass es bei der Erforschung der Struktur und der Dynamik der Milchstraße immer noch viel zu entdecken gibt.“

Kollaboration

Diese Studie wurde ermöglicht durch eine Kooperation der folgenden Forschungseinrichtungen:

Department of Physics and Astronomy, The University of Calgary, Kanada; Max-Planck-Institut für Astronomie, Heidelberg, Deutschland; Department of Physics and Astronomy, West Virginia University, USA; Green Bank Observatory, USA; Center for Gravitational Waves and Cosmology, West Virginia University, USA; Argelander-Institut für Astronomie, Universität Bonn, Deutschland; Zentrum für Astronomie, Universität Heidelberg, Deutschland; Jet Propulsion Laboratory, California Institute of Technology, USA; Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg, Deutschland; Research School of Astronomy and Astrophysics, The Australian National University, Canberra, Australien; Max-Planck-Institut für Radioastronomie, Bonn, Deutschland; Jodrell Bank Centre for Astrophysics, The University of Manchester, Großbritannien

Medienkontakt

Dr. Markus Nielbock
Max-Planck-Institut für Astronomie
Presse- und Öffentlichkeitsarbeit
Telefon:+49 6221 528-134
E-Mail: pr@mpia.de

Wissenschaftliche Ansprechpartner:

Prof. Dr. Henrik Beuther
Max-Planck-Institut für Astronomie
Telefon:+49 6221 528-447
E-Mail: beuther@mpia.de

Originalpublikation:

R. Shanahan et al.
"Strong excess Faraday rotation on the Inside of the Sagittarius spiral arm"
The Astrophysical Journal Letters, 887, L7 (2019)
DOI: 10.3847/2041-8213/ab58d4

Dr. Markus Nielbock | Max-Planck-Institut für Astronomie
Weitere Informationen:
http://www.mpia.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Das Salz des Kometen
21.01.2020 | Universität Bern

nachricht Filmpremiere mit Super-Mikroskop und Nanoröhrchen: Erstmals Entstehen von Atom-Verbindungen im Bewegtbild festgehalten
20.01.2020 | Universität Ulm

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: DKMS-Studie zum Erfolg von Stammzelltransplantationen

Den möglichen Einfluss von Killerzell-Immunoglobulin-ähnlichen Rezeptoren (KIR) auf den Erfolg von Stammzelltransplantationen hat jetzt ein interdisziplinäres Forscherteam der DKMS untersucht. Das Ergebnis: Bei 2222 Patient-Spender-Paaren mit bestimmten KIR-HLA-Kombinationen konnten die Wissenschaftler keine signifikanten Auswirkungen feststellen. Jetzt wollen die Forscher weitere KIR-HLA-Kombinationen in den Blick nehmen – denn dieser Forschungsansatz könnte künftig Leben retten.

Die DKMS ist bekannt als Stammzellspenderdatei, die zum Ziel hat, Blutkrebspatienten eine zweite Chance auf Leben zu ermöglichen. Auch auf der...

Im Focus: Gendefekt bei Zellbaustein Aktin sorgt für massive Entwicklungsstörungen

Europäische Union fördert Forschungsprojekt „PredActin“ mit 1,2 Millionen Euro

Aktin ist ein wichtiges Strukturprotein in unserem Körper. Als Hauptbestandteil des Zellgerüstes sorgt es etwa dafür, dass unsere Zellen eine stabile Form...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

KIT im Rathaus: Städte und Wetterextreme

21.01.2020 | Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Differenzierte Bildgebung für bessere Diagnosen bei Brustkrebs

21.01.2020 | Medizin Gesundheit

Kurilen-Kamchatka-Graben im Pazifischen Ozean gehört nicht mehr zu den „10.000ern“

21.01.2020 | Geowissenschaften

Proteinfunktionen - Ein Lichtblitz genügt

21.01.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics