Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heiße Elektronen weisen Weg zum perfekten Lichteinfang

01.09.2015

Physiker erforschen, wie mit Hilfe von rauen ultradünnen Schichten optimal Licht eingefangen wird

Licht absorbierende Schichten spielen in vielen alltäglichen Anwendungen eine Rolle – zum Beispiel in Solarzellen oder Sensoren. Mit ihrer Hilfe wird Licht in elektrischen Strom oder Wärme umgewandelt, die Schichten fangen das Licht förmlich ein.


Martin Piecuch justiert das Elektronenmikroskop zum Nachweis der heißen Elektronen.

Foto: Technische Universität Kaiserslautern


Dominik Differt misst die Lichtstreuung an einer rauen Absorberschicht.

Foto: Universität Bielefeld/W. Pfeiffer

Obwohl diese Absorberschichten verbreitet eingesetzt werden, verstehen Wissenschaftler noch nicht, welcher Mechanismus das Einfangen von Licht mit der höchsten Effizienz ermöglicht. Ein Team von Physikern der Universität Bielefeld, der Technischen Universität Kaiserslautern und der Universität Würzburg hat nun nachgewiesen, dass sehr effiziente Lichtstreuung in ultradünnen rauen Schichten das einfallende Licht so lange einfängt, bis es vollständig absorbiert ist.

Ihre Ergebnisse stellen die Forschenden jetzt (31.08.2015) im Magazin Nature Photonics vor. Die Forschung kann dabei helfen, dünne Absorberschichten noch effizienter zu machen, um so Energie zu sparen.

In den Experimenten wurden ultrakurze Lichtimpulse eingesetzt. Wenn solche Impulse glatte, ultradünne Schichten durchdringen, treten sie auf der anderen Seite fast unverändert und kaum abgeschwächt wieder aus. In rauen Schichten hingegen verhindern Unregelmäßigkeiten, dass der Lichtimpuls sich ungehindert im Material ausbreitet. Bei vielen Unregelmäßigkeiten bewegt sich der Lichtimpuls auf einem geschlossenen Pfad und bleibt so lange gefangen, bis das Licht absorbiert ist.

Zwei Effekte haben den Physikern erlaubt, diesen Mechanismus des Lichteinfangs nachzuweisen. Zum Einem wird vom eingefangenen Licht ein winziger Anteil freigelassen. Die zeitliche Entwicklung dieses Lichts zeigt direkt, wie lange es in der Schicht eingefangen war. Ein zweiter Effekt liefert Informationen über die räumliche Lokalisierung des Lichteinfangs und die lokale Energieabsorption.

Die Absorption eines ultrakurzen Lichtimpulses regt Elektronen im Absorbermaterial an und heizt diese kurzfristig auf Temperaturen von mehreren 1000 Grad Celsius auf – vergleichbar zur Temperatur der Sonnenoberfläche. Bei diesen Temperaturen treten Elektronen aus dem Material aus, welche mittels Elektronenmikroskopie mit hoher räumlicher Auflösung nachgewiesen wurden. Die Messungen zeigen, dass das Licht in kleine Bereiche von etwa einem Mikrometer Durchmesser eingefangen und dort auch absorbiert wird.

Der zugrundeliegende Effekt dieser so genannten Anderson-Lokalisierung wurde bereits vor mehr als 60 Jahren beschrieben und seitdem mehrmals nachgewiesen. Neu ist, dass der Mechanismus auch für dünne Absorberschichten funktioniert. „Dies eröffnet neue Wege für die Entwicklung hocheffizienter Absorber und kann so beispielsweise dazu beitragen, Dünnschicht-Solarzellen oder Sensoren zu verbessern“, sagt Professor Dr. Walter Pfeiffer von der Universität Bielefeld.

Ziel der Forschung sei es, Dünnschichtabsorber effizienter zu machen, so dass sie im Alltag angewendet werden können. Künftig wollen die Forschenden untersuchen, welche Struktur die Schicht aufweisen muss, um Licht perfekt einzufangen, um dann ein universelles Konzept für die effiziente Lichtabsorption durch Anderson-Lokalisierung zu entwickeln.

Originalveröffentlichung:
Martin Aeschlimann, Tobias Brixner, Dominik Differt, Ulrich Heinzmann, Matthias Hensen, Christian Kramer, Florian Lükermann, Pascal Melchior, Walter Pfeiffer, Martin Piecuch, Christian Schneider, Helmut Stiebig, Christian Strüber und Philip Thielen: Perfect absorption in nanotextured thin films via Anderson-localized photon modes. Nature Photonics. 2015
DOI: 10.1038/nphoton.2015.159

Kontakt:
Professor Dr. Walter Pfeiffer, Universität Bielefeld
Fakultät für Physik
Telefon: 0521 106-5470
E-Mail: pfeiffer@physik.uni-bielefeld.de

Prof. Dr. Tobias Brixner, Universität Würzburg
Institut für Physikalische und Theoretische Chemie
Telefon 0931 31-86330
E-Mail: brixner@phys-chemie.uni-wuerzburg.de

Prof. Dr. Martin Aeschlimann, Technische Universität Kaiserslautern
Fachbereich Physik
Telefon 0631 205-2322
E-Mail: ma@physik.uni-kl.de

Weitere Informationen:

http://www.physik.uni-bielefeld.de/experi/d4/index.html

Sandra Sieraad | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Was die Tiefsee über die Sterne verrät
18.12.2018 | Technische Universität Berlin

nachricht Beim Phasenübergang benutzen die Elektronen den Zebrastreifen
17.12.2018 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Bakterien ein Antibiotikum ausschalten

Forscher des HZI und HIPS haben entdeckt, dass resistente Bakterien den Wirkstoff Albicidin mithilfe eines massenhaft gebildeten Proteins einfangen und inaktivieren

Gegen die immer häufiger auftauchenden multiresistenten Keime verlieren gängige Antibiotika zunehmend ihre Wirkung. Viele Bakterien haben natürlicherweise...

Im Focus: How bacteria turn off an antibiotic

Researchers from the HZI and the HIPS discovered that resistant bacteria scavenge and inactivate the agent albicidin using a protein, which they produce in large amounts

Many common antibiotics are increasingly losing their effectiveness against multi-resistant pathogens, which are becoming ever more prevalent. Bacteria use...

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ulmer Forscher beobachten Genomaktivierung "live" im Fischembryo

18.12.2018 | Biowissenschaften Chemie

Notsignal im Zellkern – neuartiger Mechanismus der Zellzykluskontrolle

18.12.2018 | Biowissenschaften Chemie

Neue Methode für sichere Brücken

18.12.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics