Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Heidelberger Forscher analysieren chemische Zusammensetzung von Weltraumstaub jenseits des Sonnensystems

15.04.2016

Untersucht wurden äußerst seltene und extrem kleine Partikel, die die Sonde „Cassini“ identifiziert hat

Ein in Heidelberg konstruierter Staubdetektor auf der Raumsonde „Cassini“ – der Cosmic Dust Analyser (CDA) – hat mehrere extrem kleine und sehr seltene Partikel interstellaren Staubs aus dem Raum außerhalb unseres Sonnensystems identifiziert und deren chemische Zusammensetzung gemessen.


Grafik: ESA

Der Staubdetektor auf der internationalen Cassini Raumsonde hat die schwache Signatur aufgespürt, die von Staub außerhalb unseres Sonnensystems stammt, von der lokalen interstellaren Wolke: eine fast leere Blase von kosmischem Gas und Staub, durch die wir mit unserem Sonnensystem reisen. Die Graphik zeigt die Position von Saturn und unserem Sonnensystem innerhalb der lokalen interstellaren Wolke und unserer Milchstraße.

Dabei hat sich überraschend gezeigt, dass die unterschiedlichen Staubteilchen sehr ähnlich zusammengesetzt sind und den gesamten Elementmix des Kosmos in sich versammeln. Die Experten vermuten daher, dass der Staub in der „Hexenküche“ des Weltraums fortlaufend zerstört, neugebildet und damit in seiner Zusammensetzung angeglichen wird.

An den Untersuchungen eines internationalen Forscherteams waren Wissenschaftler des Instituts für Geowissenschaften und des Klaus-Tschira-Labors für Kosmochemie der Universität Heidelberg maßgeblich beteiligt. Die Forschungsergebnisse werden in der Zeitschrift „Science“ veröffentlicht.

„Interstellarer Staub, dessen einzelne Teilchen nur etwa 200 Nanometer groß und sehr schwer zu finden sind, ist gewissermaßen eine der letzten Bastionen des Unbekannten im Weltraum“, erklärt der Heidelberger Geowissenschaftler Prof. Dr. Mario Trieloff.

Der Staub ist dabei Teil der interstellaren Materie, die neben schweren Elementen im Wesentlichen aus Wasserstoffgas und Helium besteht und aus der durch Verdichtungsprozesse Sterne und Planeten entstehen können. Diese Teilchen bildeten auch das Rohmaterial für die schweren Elemente, die das Haupt-Baumaterial der Erde und anderer terrestrischer Planeten waren.

Für Untersuchungen des interstellaren Staubs ist die Wissenschaft bisher darauf angewiesen, dass Teilchen davon in unser Sonnensystem gelangen. Die Raumsonde „Stardust“ konnte bereits Partikel des sehr schwachen Stroms einfangen, der durch unser Sonnensystem zieht.

„Diese Teilchen waren allerdings ungewöhnlich groß. Daher sind die Untersuchungsergebnisse daraus möglicherweise nicht repräsentativ“, erläutert Prof. Trieloff. Dagegen konnte die „Cassini“-Raumsonde unter Millionen planetarer Staubpartikel 36 Partikel interstellaren Staubs identifizieren. Zudem ist der CDA in der Lage, diese mit Hilfe von Massenspektrometrie direkt vor Ort zu untersuchen, was deutlich präzisere Ergebnisse als bisher ermöglicht.

Nach Angaben von Dr. Frank Postberg, Heisenberg-Stipendiat am Institut für Geowissenschaften, konnten mit dem CDA zum ersten Mal massenspektrometrische Messungen an „einer statistisch bedeutsamen Menge solcher Staubpartikel“ durchgeführt werden.

Dies war nur möglich, nachdem in Heidelberg mit Hilfe aufwendiger Versuchsreihen Labormodelle des Staubdetektors kalibriert wurden. Dazu musste sogenannter Silikatstaub im Labor auf bis zu 40 Kilometer pro Sekunde beschleunigt werden, was in etwa der Geschwindigkeit interstellaren Staubs entspricht.

„Das Ergebnis der Messungen war sehr überraschend“, sagt Dr. Postberg. „Die 36 Partikel interstellaren Ursprungs, die in ihrer Zusammensetzung sehr ähnlich sind, enthalten eine Mischung der wichtigen gesteinsbildenden Elemente Magnesium, Eisen, Silicium und Calcium in durchschnittlichen kosmischen Häufigkeiten. Obwohl ein Staubteilchen weniger als ein Billionstel Gramm Masse besitzt, ist darin mit Ausnahme sehr flüchtiger Gase der gesamte Elementmix des Kosmos versammelt.

Solche Teilchen lassen sich in unserem Sonnensystem nicht finden.“ Die meisten Wissenschaftler hätten verschieden zusammengesetzte Staubpopulationen erwartet, die den verschiedenen Entstehungsprozessen in Atmosphären sterbender Sterne entsprechen. Sie finden sich auch im Sternenstaub in Meteoriten, der in seiner Isotopenzusammensetzung höchst individuell ist. „Unsere Daten erzählen aber eine völlig andere Geschichte“, betont Dr. Postberg.

Nach Einschätzung der Wissenschaftler hat der Staub seine Individualität verloren, weil er in der „Hexenküche“ des Weltraums homogenisiert wurde. Dort befinden sich riesige, Millionen Grad heiße Blasen von Supernovaexplosionen. Deren Ränder bestehen aus Schockfronten, die mit hunderten Kilometern pro Sekunde expandieren, wie der Erstautor und ESA-Wissenschaftler Dr. Nicolas Altobelli erläutert.

Nach seinen Worten haben theoretische Überlegungen bereits nahegelegt, dass interstellarer Staub diese energiereiche Umgebung nur ein paar hundert Millionen Jahre überleben kann und es nur einigen „Lucky Survivors“ gelingt, als intakter Sternenstaub in sich neu bildende Planetensysteme zu gelangen. Die aktuellen Untersuchungsergebnisse bestätigten nun, dass die meisten Partikel zerstört und in kühlen und dichten Regionen des Weltalls – den Molekülwolken – wieder neu gebildet werden. Von dort aus bringen interstellare Winde diese Teilchen als homogenisierten Staub in unser Sonnensystem.

Der Staubdetektor wurde von Wissenschaftlern des Deutschen Zentrums für Luft- und Raumfahrt (DLR), des Max-Planck-Instituts für Kernphysik in Heidelberg und der University of Kent (Canterbury/Großbritannien) entwickelt. DLR und die europäische Weltraumbehörde ESA unterstützen den Betrieb des Messinstruments. Die Projektleitung hat Dr. Ralf Srama von der Universität Stuttgart. Die chemischen Analysen werden von Dr. Postberg und Prof. Trieloff geleitet. Die Forschungsarbeiten wurden von der Klaus Tschira Stiftung unterstützt.

Originalveröffentlichung:
N. Altobelli, F. Postberg, K. Fiege, M. Trieloff, et al: Flux and composition of interstellar dust at Saturn from Cassini’s Cosmic Dust Analyzer. Science, 15. April 2016.

Kontakt:
Prof. Dr. Mario Trieloff / Dr. Frank Postberg
Institut für Geowissenschaften
Telefon +49 6221 54-6022 (Trieloff) / -8209 (Postberg)
mario.trieloff@geow.uni-heidelberg.de / Frank.Postberg@geow.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Tel. +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: CDA Cosmic DLR Geowissenschaften Kosmos Partikel Raumsonde Staubdetektor Staubpartikel Staubteilchen Teilchen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Unser Gehirn behält das Unerwartete im Blick
17.08.2018 | Philipps-Universität Marburg

nachricht Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt
16.08.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics