Halbleiter überrascht mit unerklärlichem Verhalten

Markus Stein bereitet das Experiment vor, das die ungewöhnlichen Eigenschaften des verwendeten Halbleiters zutage förderte. (Foto: Rolf Wegst; das Bild darf nur in Zusammenhang mit der Berichterstattung über die zugehörige wissenschaftliche Veröffentlichung verwendet werden.)

Leuchtdioden und viele andere optoelektronische Bauelemente, die wir tagtäglich verwenden, enthalten Halbleiterquantenfilme, das sind dünne Schichten, die zwischen anderen Materialien eingebettet sind. „Lichtteilchen können von diesen Nanoschichten absorbiert werden“, erläutert der Marburger Physikdoktorand Markus Stein, Erstautor des aktuellen Fachaufsatzes.

Dabei gibt es Absorptionslinien, also Wellenlängen bei denen die elektromagnetische Strahlung besonders gut absorbiert wird. „Es ist seit langem bekannt, dass diese Linien schwächer und breiter werden, wenn man das Halbleitermaterial bestrahlt“, führt Stein aus.

Der Nachwuchswissenschaftler fand nun heraus, dass die Linien unter bestimmten Bedingungen auch stärker und schmaler werden können. „Das ist ein für uns völlig unerwarteter Effekt“, sagt Professor Dr. Martin Koch, der die Marburger Arbeitsgruppe Halbleiterphotonik leitet, in der Stein derzeit seine Doktorarbeit anfertigt: „Alle Erklärungsversuche auf der Grundlage bekannter physikalischer Mechanismen versagen.“

Für seine Experimente verwendete Stein Material, das die Arbeitsgruppe Halbleiterepitaxie herstellt hat, die von Professor Dr. Wolfgang Stolz geleitet wird. Die Proben enthalten Quantenfilme, die Stein mit einem kurzen Laserpuls anregte, der nach etwa einer Nanosekunde zur einer verstärkten Absorption führte.

Die untersuchten Halbleiter taugen als Muster für Materialsysteme, bei denen eine räumliche Ladungsübertragung stattfindet, was zum Beispiel für das Funktionieren von Solarzellen unerlässlich ist. Daher vermutet Koch, dass die Fachwelt das neue Phänomen zum Anlass nimmt, um weitere Experimente durchzuführen und die Befunde theoretisch zu erklären. Technische Anwendungen sind nicht auszuschließen, liegen aber einstweilen noch in ferner Zukunft.

Professor Dr. Martin Koch lehrt Experimentelle Halbleiterphysik an der Philipps-Universität Marburg. Die Deutsche Forschungsgemeinschaft förderte die Forschungsarbeiten, die der aktuellen Veröffentlichung zugrunde liegen durch den Marburger Sonderforschungsbereich 1083.

Originalpublikation: Markus Stein & al.: Enhanced absorption by linewidth narrowing in optically excited type-II semiconductor heterostructures, Physical Review Letters 121/2018, 017401, DOI: https://doi.org/10.1103/PhysRevLett.121.017401

Weitere Informationen:
Ansprechpartner: Markus Stein,
Arbeitsgruppe Experimentelle Halbleiterphysik
Tel: 06421 28-22122
E-Mail: markus.stein@physik.uni-marburg.de

Professor Dr. Martin Koch,
Tel.: 06421 28-22270
E-Mail: kochmar2@staff.Uni-Marburg.de

Media Contact

Johannes Scholten idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-marburg.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Rittal TX Colo: Das neue Rack für Colocation Data Center

Rittal TX Colo: Flexibel, skalierbar und zukunftssicher Mit der zunehmenden Digitalisierung und künftig auch immer mehr KI-Anwendungen steigt der Bedarf an Rechenleistung signifikant – und damit boomt der Colocation-Markt. Unternehmen…

Neue Dropbox Features

Nahtlose Ende-zu-Ende-Verschlüsselung, gemeinsame Dokumentenerstellung für Microsoft, erweiterte Dropbox Replay-Funktionen und vieles mehr. Dropbox Inc. (NASDAQ: DBX) kündigt heute neue Funktionen für mehr Sicherheit, bessere Organisation sowie schnellere und bequemere Freigabeprozesse…

Molekulare Fingerabdrücke jenseits der Nyquist-Frequenz

Die ultraschnelle Laserspektroskopie ermöglicht die Erfassung dynamischer Vorgänge auf extrem kurzen Zeitskalen, und macht sie damit zu einem sehr nützlichen Instrument für viele wissenschaftliche und industrielle Anwendungen. Ein großer Nachteil…

Partner & Förderer