Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Halbleiter magnetisch werden

15.10.2012
Materialien, die bei Raumtemperatur sowohl halbleitende als auch magnetische Eigenschaften besitzen, sind ein lange gehegter Wunsch von Physikern.

Sie könnten schnelleres und energiesparendes Rechnen ermöglichen und so die Elektro- und Informationstechnologie revolutionieren. Ein internationales Forscherteam unter Beteiligung von Physikern des Forschungszentrums Jülich ist diesem Ziel einen Schritt näher gekommen.


Die Abbildung zeigt schematisch den Ablauf des Experiments: Photonen (grüner Pfeil) treffen auf die Probe, wodurch Elektronen freigesetzt werden (roter Pfeil). Ihre Energie und der Winkel, unter dem sie die Probe verlassen, werden gemessen. Ein Messergebnis ist rechts unten abgebildet.
Quelle: Forschungszentrum Jülich

Mit Hilfe einer kürzlich entwickelten Methode beantworten sie die kontrovers diskutierte Frage, wie der Magnetismus in einem der wichtigsten magnetischen Halbleiter bei tiefen Temperaturen entsteht. Die Ergebnisse sind in der aktuellen Ausgabe der renommierten Fachzeitschrift „Nature Materials“ nachzulesen (DOI: 10.1038/NMAT3450).

Halbleiter bilden die Basis unserer Informationstechnologie. Sie verarbeiten die Information in Form von elektrischer Ladung, den Elektronen. Doch Elektronen besitzen neben der Ladung eine weitere nutzbare Eigenschaft, den Spin. Diese Rotation des Elektrons in die eine oder die andere Richtung um sich selbst erzeugt ein magnetisches Moment, das weitere Informationen tragen kann. Es wird bereits zur magnetischen Speicherung von Daten genutzt.

Spins könnten zukünftig auch dazu genutzt werden, die Information zu transportieren. Dazu wäre weniger Energie notwendig als zum Transport von Ladungen. Materialien, die magnetische mit Halbleiter-Eigenschaften vereinen, können Spins verlustarm transportieren und hätten für Anwendungen den großen Vorteil, dass sie leicht in die vorhandene Halbleitertechnologie integrierbar wären. Doch Halbleiter sind normalerweise nicht magnetisch. Versuche, sie dauerhaft magnetisch zu machen, gelingen überwiegend bei extrem tiefen Temperaturen, die sich für technische Anwendungen nicht eignen.

Eines der wichtigsten magnetischen Halbleitermaterialien ist Galliummanganarsenid (GaMnAs), das durch Dotierung des Halbleiters Galliumarsenid (GaAs) mit Mangan erzeugt wird. Es ist bei Temperaturen unter 100 Grad Kelvin magnetisch, wie schon seit 1996 bekannt ist. Umstritten war bisher, wie dieser Magnetismus entsteht.

Wissenschaftlern aus Deutschland, den USA, Japan und Italien gelang es nun, die Energie der Elektronen zu bestimmen, die die magnetische Eigenschaft in Galliummanganarsenid ausmachen. Dafür untersuchten sie Proben von Galliumarsenid und Galliummanganarsenid mittels winkelaufgelöster Photoemissionsspektroskopie an der stärksten Synchrotronanlage der Welt, „SPring-8“ in Japan.

Dabei werden Proben mit Photonen beschossen, wodurch Elektronen die Probe verlassen. Ihre Energie und der Winkel, unter dem sie die Probe verlassen, werden gemessen und geben Auskunft über die Energie und die Verteilung der Elektronen in der Probe. Durch den Vergleich der Messkurven fanden die Forscher ein kleines zusätzliches Signal im Galliummanganarsenid und identifizierten damit die sogenannten Valenzelektronen des Mangan, die den Magnetismus ausmachen.

„Galliummanganarsenid enthält nur eine kleine Menge Mangan und die Unterschiede zwischen den Messkurven sind deshalb nur sehr klein. Die sehr energiereichen Photonen von SPring-8 dringen aber tiefer in die Probe als energieärmere Photonen und ermöglichen den zuverlässigen Nachweis auch kleiner Unterschiede zwischen Materialien, wie in diesem Fall“, erklärt Dr. Lukasz Plucinski vom Jülicher Peter Grünberg Institut. Bei oberflächennahen Messungen mit energiearmen Photonen fallen solche geringen Unterschiede nicht auf oder Ergebnisse sind nicht signifikant, weil schon kleinste Verunreinigungen oder Unebenheiten der Oberflächen Messabweichungen verursachen können.

Die hohen Energien der Photonen, die an großen Synchrotronanlagen erzeugt werden, ermöglichen Forschern erst seit kurzem, Materialproben tief im Inneren zu untersuchen; dies hatten die Forscher aus Jülich und Berkeley bereits 2011 gezeigt. Vorher beschränkten sich die Messungen auf wenige Atomlagen an der Oberfläche.

„Die Übereinstimmung der Messergebnisse mit den theoretischen Berechnungen ist sehr gut und hat auch die Gutachter überzeugt“, freut sich Prof. Claus M. Schneider, Direktor am Peter Grünberg Institut. „Wir haben damit eine Methode an der Hand, die uns bei der gezielten Suche nach Halbleitern, die bei Raumtemperatur magnetisch sind, helfen kann.“

Originalveröffentlichung:
Bulk electronic structure of the dilute magnetic
semiconductor Ga1-xMnxAs through hard X-ray angle-resolved
photoemission; A. X. Gray at al.; Nature Materials (2012), DOI: 10.1038/NMAT3450

Bildmaterial können Sie am Montag, 15. Oktober, von 12 Uhr an auf der Homepage des Forschungszentrums herunterladen (http://www.fz-juelich.de)

Weitere Informationen:
Forschungszentrum Jülich: www.fz-juelich.de
Pressemitteilung vom 18.8.2011 „Blick in bisher ungeahnte Tiefen“: http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2011/11-08-18photoemissionsspektroskopie.html
Peter Grünberg Institut – Elektronische Eigenschaften (PGI-6): www.fz-juelich.de/pgi/pgi-6/

Ansprechpartner:
Dr. Lukasz Plucinski, Forschungszentrum Jülich, Elektronische Eigenschaften (PGI-6), Tel. 02461 61-6684, E-Mail: l.plucinski@fz-juelich.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Erhard Zeiss | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planetologen erklären, wie die Entstehung des Mondes Wasser auf die Erde brachte
21.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Kernoberfläche beeinflusst Neutronenbindung
17.05.2019 | Technische Universität Darmstadt

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Chaperone halten das Tumorsuppressor-Protein p53 in Schach: Komplexer Regelkreis schützt vor Krebs

Über Leben und Tod einer Zelle entscheidet das Anti-Tumor-Protein p53: Erkennt es Schäden im Erbgut, treibt es die Zelle in den Selbstmord. Eine neue Forschungsarbeit an der Technischen Universität München (TUM) zeigt, dass diese körpereigene Krebsabwehr nur funktioniert, wenn bestimmte Proteine, die Chaperone, dies zulassen.

Eine Krebstherapie ohne Nebenwirkungen, die gezielt nur Tumorzellen angreift – noch können Ärzte und Patienten davon nur träumen. Dabei hat die Natur ein...

Im Focus: Wasserstoff – Energieträger der Zukunft?

Fraunhofer-Allianz Energie auf Berliner Energietagen

Im Pariser Klimaabkommen beschloss die Weltgemeinschaft, dass die weltweite Wirtschaft zwischen 2050 und 2100 treibhausgasneutral werden soll. Um die...

Im Focus: Quanten-Cloud-Computing mit Selbstcheck

Mit einem Quanten-Coprozessor in der Cloud stoßen Innsbrucker Physiker die Tür zur Simulation von bisher kaum lösbaren Fragestellungen in der Chemie, Materialforschung oder Hochenergiephysik weit auf. Die Forschungsgruppen um Rainer Blatt und Peter Zoller berichten in der Fachzeitschrift Nature, wie sie Phänomene der Teilchenphysik auf 20 Quantenbits simuliert haben und wie der Quantensimulator das Ergebnis erstmals selbständig überprüft hat.

Aktuell beschäftigen sich viele Wissenschaftler mit der Frage, wie die „Quantenüberlegenheit“ auf heute schon verfügbarer Hardware genutzt werden kann.

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Diabetes Kongress 2019: „Diabetes – Nicht nur eine Typ-Frage“

21.05.2019 | Veranstaltungen

Nachwuchskräfte aufgepasst! „Traumjobs live“ bei der Friedhelm Loh Group

20.05.2019 | Veranstaltungen

MS Wissenschaft startet Deutschlandtour mit Fraunhofer-KI an Bord

17.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

KI-Forschung in Deutschland: Landkarte der Plattform Lernende Systeme gibt Überblick

21.05.2019 | Informationstechnologie

Diabetes Kongress 2019: „Diabetes – Nicht nur eine Typ-Frage“

21.05.2019 | Veranstaltungsnachrichten

Chaperone halten das Tumorsuppressor-Protein p53 in Schach: Komplexer Regelkreis schützt vor Krebs

21.05.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics