Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Größter Kamera-Chip der Welt für die Astronomie

28.01.2010
Der Potsdamer PEPSI Spektrograph bekommt sein erstes "Auge"

Wissenschaftler und Ingenieure des Astrophysikalischen Instituts Potsdam (AIP) der Universität von Arizona und der Firma STA in Kalifornien haben einen extrem großen CCD (charged coupled device) Detektor für besonders lichtschwache Astronomie entwickelt, gebaut und erfolgreich im Kühlgefäß installiert. Der Detektor arbeitet in den ersten wissenschaftlichen Labortests absolut fehlerfrei.


Die erste der beiden 10k x 10k Einheiten bei einer Temperatur von -100 Grad Celsius und einem Vakuum von 10-5 Torr während der Labortests. Foto: Emil Popow/AIP


112 Megapixel STA1600A CCD im AIP Kühlgefäß. Die Einheit hat 16 Ausgabeverstärker auf zwei Videoboards. Foto: Mike Lesser, ITL

Der Detektor ist der größte seiner Art der je gebaut wurde. Er besteht aus 10560 x 10560 Pixeln, die je 9 x 9 Mikrometer (9 Tausendstel eines Millimeters), groß sind. Zusammengenommen ergibt das in etwa eine Größe von 112 Millionen Pixeln bzw. 112 MPix auf einer Fläche von 95 Millimetern mal 95 Millimetern. Der Detektor muss in einem nahezu perfekten Vakuum arbeiten, bei einer Temperatur von -130 Grad Celsius, um die Bewegung der natürlichen Moleküle und Atome des Materials so gering wie möglich zu halten. Zwei solcher Detektoren werden zukünftig gleichzeitig am "Potsdam Echelle Polarimetric and Spectroscopic Instrument" PEPSI arbeiten und einen extrem schwachen Lichtstrom aufspüren können, der aus nur wenigen Photonen pro Sekunde und Wellenlängeneinheit besteht, also etwa eine Milliarde lichtschwächer ist als alles was, man mit dem bloßen Auge noch erkennen kann. PEPSI wird 2011 am Large Binocular Telescope (LBT) Arizona, dem mit zwei 8,4 Meter großen Spiegeln derzeit größten optischen und bodengebundenen Teleskop weltweit, installiert dann der leistungsfähigste Spektrograph sein, der für Astronomen verfügbar ist.

Das Kernstück der Einheit wurde von Richard Bredthauer und seinem Team der "Semiconductor Technology Associates (STA)" in Kalifornien, USA, entworfen und wurde für seine lichtschwache Sensitivität vom "Imaging Technology Laboratory" (ITL) der "University of Arizona" von Michael Lessers Gruppe bearbeitet. Dazu wurde der lichtempfindliche Bereich der Einheit stark verdünnt. Dieser Prozess dauerte zwei Jahre, denn es musste eine Atomschicht nach der anderen von der Oberfläche der dünnen Scheibe abgenommen werden, bis nur noch wenige hundert Silikonatomeinheiten übrig blieben. So erhält der Detektor eine sehr hohe, so genannte Quanteneffizienz von 96 Prozent im sichtbaren Licht. Das bedeutet, dass der Detektor nur vier Prozent der ankommenden Photonen nicht erfassen kann. Früher verpasste selbst eine exzellente astronomische Fotoplatte bis zu 98 Prozent der ankommenden Photonen. In den Laboren des AIP in Potsdam wurden das Kühlgefäß und der Kopf der CCD Kamera mit hoher Präzision gebaut. "Die Anforderungen an die Dichte des Vakuums und an die Festigkeit des Materials waren bei dieser Einheit gerade wegen der Größe und der Wärmeempfindlichkeit auf der Oberfläche der CCDs besonders hoch", erklärt Professor Klaus G. Strassmeier, PI des PEPSI Projektes und einer der Direktoren des AIP. "Man muss sich vorstellen, dass die Abweichung einer solch überdimensionalen CCD Oberfläche trotzdem nur ein Hundertstel eines Millimeters von einer Kante zur anderen sein darf. Das ist als ob man 112 Millionen Zahnstocher in den Boden steckt, um die Oberfläche eines Fußballfeldes zu bedecken und man darf nur 1Millimeter von einer Ecke zur anderen abweichen, und man hat nur einen Versuch pro Zahnstocher", beschreibt Prof. Strassmeier.

Wenn der Detektor in naher Zukunft Sternenlicht am LBT sieht, werden PEPSI und seine beiden 10k CCDs kosmische Magnetfelder vermessen und erdähnliche Exoplaneten ausfindig machen.

Kontakte:
Wissenschaftlicher Ansprechpartner am AIP:
Prof. Dr. Klaus G. Strassmeier, Tel. +49 (0) 331 7499-223, E-Mail: kstrassmeier@aip.de
Wissenschaftlicher Ansprechpartner Imaging Technology Laboratory (ITL):
Dr. Michael Lesser, Tel. +1 (520) 628-2078
Wissenschaftlicher Ansprechpartner Semiconductor Technology Associates Inc. (STA):

Dr. Richard Bredthauer, Tel. +1 (949) 481-1595

Pressestelle des AIP:
Madleen Köppen, Tel. 0331 7499-469, E-Mail: presse@aip.de
Imaging Technology Laboratory (ITL) is dedicated to advancing scientific and industrial imaging science by developing enabling technologies for the University of Arizona and worldwide research sponsors.

Semiconductor Technology Associates Inc. (STA) is dedicated to providing the highest quality custom Charge Coupled Devices to the commercial and scientific communities. Their expertise lies in the design, fabrication, packaging and characterization of the finest CCDs available in the world.

Das AIP beschäftigt sich vorrangig mit kosmischen Magnetfeldern und extragalaktischer Astrophysik. Daneben wirkt das Institut als Kompetenzzentrum bei der Entwicklung von Forschungstechnologie in den Bereichen Spektroskopie, robotische Teleskope und E-Science. Das AIP ist Nachfolger der 1700 gegründeten Berliner Sternwarte und des 1874 gegründeten Astrophysikalischen Observatoriums Potsdam, das sich als erstes Institut weltweit ausdrücklich der Astrophysik widmete. Das AIP ist eine Stiftung privaten Rechts und ein Institut der Leibniz-Gemeinschaft. Zur Leibniz-Gemeinschaft gehören derzeit 86 Forschungsinstitute und Serviceeinrichtungen für die Forschung sowie drei assoziierte Mitglieder, die wissenschaftliche Fragestellungen von gesamtgesellschaftlicher Bedeutung bearbeiten.

Madleen Köppen | Astrophysikalisches Institut Pot
Weitere Informationen:
http://www.aip.de

Weitere Berichte zu: AIP Arizona Astronomie Astrophysik CCD ITL Kamera-Chip Kühlgefäß LBT Magnetfeld PEPSI Photon STA Semiconductor Vakuum information technology

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung
19.10.2018 | Universität Greifswald

nachricht Mission BepiColombo: Jenaer Sensor hilft, Geheimnisse des Merkur zu entschlüsseln
19.10.2018 | Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics