Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Größe von Bor-Isotopen bestimmt - Forschung zwischen Kern- und Atomphysik

13.05.2019

In einem Experiment an der TU Darmstadt ist es erstmals gelungen, winzige Größenunterschiede zwischen stabilen Bor-Isotopen zu bestimmen. Zugleich wurden neue Theorien zu Kernradien getestet. Dafür waren neben genauer Vermessung der von den Atomen emittierten Spektrallinien anspruchsvolle Berechnungen der Atomhüllen notwendig. Die Ergebnisse wurden nun in den „Physical Review Letters“ veröffentlicht. Sie legen das Fundament für geplante Messungen an einem exotischen, kurzlebigen Bor-Isotop.

Die Qualität von Kernmodellen wird am besten getestet, indem ein Experiment die theoretische Vorhersage überprüft. Je präziser ein Experiment und die entsprechende Theorie sind, desto signifikanter wird die Aussage:


Ionisationsregion, in der der Atomstrahl mit dem Laser überlagert und ionisiert wird, mit eingeschaltetem Lasersystem.

Kristian König

Übereinstimmungen zwischen Experiment und Theorie weisen auf ein korrekteres Modell hin; Abweichungen hingegen können Indizien liefern, welche Effekte in der Theorie möglicherweise noch nicht ausreichend berücksichtigt wurden.

Die Berechnung der Eigenschaften eines Atomkerns stellt ein hochkomplexes Problem dar. Lösungsansätze dazu befinden sich noch immer in rasanter Entwicklung. Nur für die leichtesten Kerne können vollständige Rechnungen ausgehend von individuellen Kernbausteinen (ab initio) durchgeführt werden.

In dem jüngst durchgeführten hochpräzisen atomphysikalischen Experiment an der TU Darmstadt wurde erstmals die Isotopieverschiebung der Ladungsradien der beiden stabilen Bor-Isotope 10B und 11B gemessen, also die Verschiebung zwischen den charakteristischen Spektrallinien, die die beiden Isotope aussenden. Der so gewonnene Wert ist etwas größer, als der, den theoretische Kernphysiker der TU Darmstadt und des Argonne National Laboratory (ANL) in Chicago in präzisen Berechnungen ermittelt hatten.

Die Experimente wurden im Rahmen des Sonderforschungsbereichs (SFB) 1245 am Institut für Kernphysik der TU Darmstadt von einem Team um Professor Wilfried Nörtershäuser durchgeführt. Dabei wurden mit hochpräzisen Lasersystemen Atome der stabilen Borisotope, deren Kerne entweder aus 10 (10B) oder 11 (11B) Kernbausteinen aufgebaut sind, ionisiert.

Ein winziger Teil (5*10-9) der für die Laseranregung benötigten Frequenz hängt von der Größe des Atomkerns ab. Die präzise Messung des Frequenzunterschieds zwischen Bor-10 und Bor-11 erlaubt es, den Unterschied von deren Kerngrößen zu bestimmen. Dazu ist es jedoch notwendig, alle anderen Einflüsse, welche 99.9 Prozent des Frequenzunterschiedes verursachen, sehr genau zu berechnen. Ein Forscherteam aus Polen hat sich dieser Aufgabe angenommen und erstmals die Isotopieverschiebung für Systeme mit fünf Elektronen präzise theoretisch ermittelt.

Professor Robert Roth von der TU Darmstadt und ein weiteres Team von theoretischen Kernphysikern am Argonne National Laboratory in den USA haben ihre fortschrittlichen Kernmodelle verwendet, um parallel die Radien der beiden Isotope zu berechnen und mit den neuen experimentellen Werten zu vergleichen.

„Unsere Arbeit demonstriert in besonderer Weise, wie die Verzahnung verschiedener Fachgebiete der Physik neue Erkenntnisse hervorbringt“, erläutert Bernhard Maaß, Doktorand am SFB 1245 und Erstautor der Studie: „Ohne die präzisen atomphysikalischen Berechnungen unserer polnischen Kollegen wäre die Genauigkeit unseres Experiments wertlos gewesen, und die Fortschritte in der theoretischen Kernstrukturphysik machen das Resultat auch für die Kernphysik interessant.“

Die Ergebnisse sind ermutigend für ein weiteres, wesentlich umfangreicheres Experiment, welches derzeit von der Forschergruppe mit weiteren Kollegen am ANL aufgebaut wird. Dieses hat zum Ziel, analoge Messungen an dem exotischen Borisotop 8B durchzuführen, welches nicht in der Natur vorkommt, da es bereits nach wenigen Millisekunden radioaktiv zerfällt.

Dieses Radioisotop, das nur am ANL in ausreichenden Mengen erzeugt werden kann, besitzt eine besondere Struktur: Eines der Protonen umkreist den Kern in einem großen Abstand. Dadurch wird der Kernradius vergrößert, was sich im Experiment in einer starken Verschiebung der Übergangsfrequenz zeigen sollte. Die genaue Bestimmung dieses Radius wird es den theoretischen Kernphysikern erlauben, ihre Berechnungen an einem exotischen Atomkern zu testen, dessen Struktur gegenwärtig noch nicht gut verstanden ist.

Die Veröffentlichung:
https://bit.ly/2HgwHpR

Über die TU Darmstadt
Die TU Darmstadt zählt zu den führenden Technischen Universitäten in Deutschland. Sie verbindet vielfältige Wissenschaftskulturen zu einem charakteristischen Profil. Ingenieur- und Naturwissenschaften bilden den Schwerpunkt und kooperieren eng mit prägnanten Geistes- und Sozialwissenschaften. Weltweit stehen wir für herausragende Forschung in unseren hoch relevanten und fokussierten Profilbereichen: Cybersecurity, Internet und Digitalisierung, Kernphysik, Energiesysteme, Strömungsdynamik und Wärme- und Stofftransport, Neue Materialien für Produktinnovationen. Wir entwickeln unser Portfolio in Forschung und Lehre, Innovation und Transfer dynamisch, um der Gesellschaft kontinuierlich wichtige Zukunftschancen zu eröffnen. Daran arbeiten unsere 312 Professorinnen und Professoren, 4.450 wissenschaftlichen und administrativ-technischen Mitarbeiterinnen und Mitarbeiter sowie knapp 26.000 Studierenden. Mit der Goethe-Universität Frankfurt und der Johannes Gutenberg-Universität Mainz bildet die TU Darmstadt die strategische Allianz der Rhein-Main-Universitäten.

www.tu-darmstadt.de


MI-Nr. 29/2019, Nörtershäuser/sip

Wissenschaftliche Ansprechpartner:

Kontakt:
TU Darmstadt
Fachbereich Physik
Prof. Dr. Wilfried Nörtershäuser
Tel.: 06151/16-23575
wnoertershaeuser@ikp.tu-darmstadt.de

Originalpublikation:

https://doi.org/10.1103/PhysRevLett.122.182501

Mareike Hochschild | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein Turbolader für den Superrechner JUWELS
15.11.2019 | Forschungszentrum Jülich

nachricht Lichtimpulse mit wenigen optischen Zyklen durchbrechen die 300 W-Barriere
14.11.2019 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neu entwickeltes Glas ist biegsam

Eine internationale Forschungsgruppe mit Beteiligung der Österreichischen Akademie der Wissenschaften hat ein Glasmaterial entwickelt, das sich bei Raumtemperatur bruchfrei verformen lässt. Das berichtet das Team aktuell in "Science". Das extrem harte und zugleich leichte Material verspricht ein großes Anwendungspotential – von Smartphone-Displays bis hin zum Maschinenbau.

Gläser sind ein wesentlicher Bestandteil der modernen Welt. Dabei handelt es sich im Alltag meist um sauerstoffhaltige Gläser, wie sie etwa für Fenster und...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: Veränderungen der Chiralität von Molekülen in Echtzeit beobachten

Chirale Moleküle – Verbindungen, die als Bild und Spiegelbild vorkommen – spielen eine wichtige Rolle in biologischen Prozessen und in der chemischen Synthese. Chemikern der ETH Zürich ist es nun erstmals gelungen, mit Hilfe von Ultrakurzzeit-Laserpulsen Änderungen der Chiralität während einer chemischen Reaktion in Echtzeit zu beobachten.

Manche Moleküle können in zwei spiegelbildlichen Formen existieren, ähnlich wie unsere Hände. Obwohl solche sogenannten Enantiomere fast identische...

Im Focus: Durchbruch in der Malariaforschung

Eine internationale Forschungsgruppe um den Zellbiologen Volker Heussler von der Universität Bern hat hunderte genetische Schwachstellen des Malaria-Parasiten Plasmodium identifiziert. Diese sind in der Medikamenten- und Impfstoffentwicklung dringend erforderlich, um die Krankheit dereinst ausrotten zu können.

Trotz grosser Anstrengungen in Medizin und Wissenschaft, sterben weltweit immer noch mehr als 400'000 Menschen an Malaria. Die Infektionskrankheit wird durch...

Im Focus: Bauplan eines bakteriellen Kraftwerks entschlüsselt

Wissenschaftler der Universität Würzburg und der Universität Freiburg gelang es die komplexe molekulare Struktur des bakteriellen Enzyms Cytochrom-bd-Oxidase zu entschlüsseln. Da Menschen diesen Typ der Oxidase nicht besitzen, könnte dieses Enzym ein interessantes Ziel für neuartige Antibiotika sein.

Sowohl Menschen als auch viele andere Lebewesen brauchen Sauerstoff zum Überleben. Bei der Umsetzung von Nährstoffen in Energie wird der Sauerstoff zu Wasser...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Antibiotika aus dem Meer

18.11.2019 | Biowissenschaften Chemie

Lebende Brücken: Mit alten indischen Bautechniken moderne Städte klimafreundlich gestalten

18.11.2019 | Architektur Bauwesen

„Moonwalk“ für die Wissenschaft zeigt Verzerrungen im räumlichen Gedächtnis

18.11.2019 | Studien Analysen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics