Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Greifswalder Physiker entwickeln Technik für Strukturuntersuchung an Biomolekülen

04.04.2018

Physiker der Universität Greifswald unterstützen ein internationales Forscherteam bei der Aufklärung von Strukturen und der Dynamik von Biomolekülen. Ziel ist, im Rahmen des Projektes MS SPIDOC einen neuartigen Massenspektrometer-Prototyp für eine optimierte Einzelmolekülabbildung zu entwickeln. Solch ein Gerät könnte bei der Entwicklung neuer Impfstoffe und Medikamente gegen Infektionskrankheiten eingesetzt werden. Das Projekt wird geleitet vom Heinrich-Pette-Institut (Hamburg).

In dem Massenspektrometer-Prototyp sollen elektrisch geladene Biomoleküle in ein Hochvakuum überführt, nach ihrem Masse- zu Ladungsverhältnis sowie ihrer Form getrennt und nach ihrem Dipolmoment ausgerichtet werden. Die geplante Wechselwirkung mit dem Freie-Elektronen-Laser des European XFEL https://www.xfel.eu/index_ger.html ermöglicht dann die Aufschlüsselung der dreidimensionalen Struktur der Proteinkomplexe und viralen Systeme. (Siehe auch Medieninformation zu MS SPIDOC https://idw-online.de/de/news690669)


Das Filter-/Fallensystem vor dem Einbau in die Apparatur

Foto: Steffi Bandelow


Das Filter-/Fallensystem mit Größenvergleich

Foto: Steffi Bandelow

Eine besondere Herausforderung sind dabei der große Massenbereich interessanter Biomoleküle mit bis zu einer Million atomarer Masseneinheiten sowie der effiziente Transport und die genaue Positionierung für den Beschuss mit dem Röntgenlaser XFEL.

Die Greifswalder Physiker um Prof. Dr. Lutz Schweikhard https://physik.uni-greifswald.de/ag-schweikhard/ entwickeln ein Filter-/Fallensystem für die geladenen Partikel, mit dem nicht nur das ausgewählte Biomolekül aus einer Mixtur herausgefiltert, sondern auch über einen ausgedehnten Zeitraum gespeichert werden kann.

Werden die gesammelten Biomoleküle anschließend als Ionenpaket dem XFEL zugeführt, kann die Probendichte so signifikant erhöht werden, dass die Abbildung mit den nur wenige Femtosekunden kurzen Röntgenpulsen möglich wird.*

Zur Führung und Speicherung der Molekülionen werden elektrische Radiofrequenzfelder verwendet. Dabei können die zu untersuchenden Biomoleküle mit definierten Masse- zu Ladungsverhältnissen aufgrund der verwendeten Frequenzen und Amplituden dieser Radiofrequenzfelder ausgewählt werden. Nicht gewünschte Spezies werden dagegen noch vor der Wechselwirkungszone abgelenkt.

Dabei ist eine Spezialität der Greifswalder die Verwendung von Spannungen mit einer Rechteckform anstelle der konventionell genutzten Sinussignale. Dadurch kann dem großen Massebereich der Biomoleküle entsprochen werden. Die (Weiter-)Entwicklung dieser Methode ist Teil der Doktorarbeit von Steffi Bandelow.

Das Projekt MS SPIDOC http://www.hpi-hamburg.de/de/aktuelles/presse/einzelansicht/archive/2018/article... ist als eines von 27 Projekten aus 395 Anträgen bewilligt worden. Geleitet wird es vom Heinrich-Pette-Institut http://www.hpi-hamburg.de/ in Hamburg. Neben dem European XFEL (Schenefeld bei Hamburg) beteiligen sich Kooperationspartner aus Griechenland, Frankreich, Niederlande, Schweden und Großbritannien. Insgesamt wird das dreijährige Projekt MS SPIDOC mit 3,7 Millionen Euro gefördert (Fördernummer 801406).

Weitere Informationen

* Die zu untersuchenden Biomoleküle befinden sich zunächst in einer Lösung innerhalb einer Kapillare. Deren Spitze wird mit einer Pinzette aufgebrochen, so dass eine Öffnung von wenigen µm entsteht. Mittels elektrischer Felder werden die geladenen Teilchen durch einen Konus ins Vakuum überführt. Im anschließenden Filter-/Fallensystem werden sie aufgrund ihres Masse- zu Ladungsverhältnisses selektiert und gesammelt. Danach kann das so entstandene „Ionenpaket“ dem Röntgenlaser zugeführt werden.

Fotos:
1. Das Filter-/Fallensystem vor dem Einbau in die Apparatur.
2. Das Filter-/Fallensystem mit Größenvergleich.
3. Kapillarspitze neben dem Kopf eines Wattestäbchens.

Alle Fotos: Steffi Bandelow
Die Fotos können für redaktionelle Zwecke im Zusammenhang mit dieser Pressemitteilung kostenlos heruntergeladen und genutzt werden. Dabei ist der Name des Bildautors zu nennen. Download https://www.uni-greifswald.de/universitaet/information/aktuelles/medienfotos/med...

Ansprechpartner an der Universität Greifswald

Prof. Dr. Lutz Schweikhard
Institut für Physik
Felix-Hausdorff-Straße 6
17489 Greifswald
Telefon +49 3834 420 4750
lschweik@physik.uni-greifswald.de
http://www.researchgate.net/profile/Lutz_Schweikhard

Steffi Bandelow
Institut für Physik
Felix-Hausdorff-Straße 6
17489 Greifswald
Telefon +49 3834 420 4756
bandelow@physik.uni-greifswald.de

Jan Meßerschmidt | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

nachricht Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung
17.07.2018 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics