Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gravitationswellen: Sternenglanz für Jenaer Forscher

19.10.2017

Physiker der Universität Jena erforschen die theoretischen Grundlagen für die Beobachtung der Gravitationswellen / Neutronenstern-Kollision am Modell vorhergesagt

Vor gut 130 Millionen Jahren kollidierten zwei Neutronensterne in der Galaxie NGC 4993. Die gigantische Explosion dieser extrem dichten Himmelskörper wurde am 17. August dieses Jahres von zahlreichen Observatorien weltweit aufgezeichnet. Für Physiker und Astronomen wurde das Himmelsphänomen, das jetzt verkündet wurde, zu einer wahren Sternstunde; ein Teil des Glanzes fällt auch auf die Universität Jena.


Computersimulation von der Kollision zweier Neutronensterne. Oben: Gravitationswellen (in blau-grün), die während der letzten Orbits der zwei Neutronensterne mit Lichtgeschwindigkeit ausgesandt wurden. Unten: Bei der Kollision wird Materie der Neutronensterne (in gelb-orange) in den Weltraum geschleudert, während sich im Zentrum ein Schwarzes Loch mit Akkretionsscheibe bildet.

[Simulation: T. Dietrich (MPI für Gravitationsphysik) und die BAM/Jena-Kollaboration.

Visualisierung: T. Dietrich, S. Ossokine, H. Pfeiffer, A. Buonanno (MPI für Gravitationsphysik)

„Die Kollision der beiden Neutronensterne konnte beobachtet werden, weil zunächst die Gravitationswellen aufgezeichnet wurden, die dem kosmischen Ereignis vorausgingen“, sagt Prof. Dr. Bernd Brügmann von der Universität Jena. Der Inhaber des Lehrstuhls für Gravitationstheorie spricht von einer einzigartigen globalen Zusammenarbeit von Wissenschaftlerinnen und Wissenschaftlern, die den bahnbrechenden Erfolg ermöglichte.

Platin und Gold im interstellaren Raum

Nachdem das LIGO (Laser Interferometer Gravitational Wave Observatory) in den USA und das Virgo-Interferometer in Italien die der Kollision der Sterne vorausgehenden Gravitationswellen aufgezeichnet hatten, richteten Astronomen weltweit ihre Teleskope auf die Galaxie NGC 4993, die sich mit etwa 130 Millionen Lichtjahren relativ nah an unserem Sonnensystem befindet. Beobachtet wurden der Lichtblitz der Explosion und das tagelange Abklingen der Strahlung, wodurch weitere erhellende Erkenntnisse gelangen.

Wie Prof. Brügmann erläutert, entstehen durch die nach der Sternenkollision ablaufenden Prozesse schwere Elemente wie Platin und Gold, die in den interstellaren Raum geschleudert werden. Bis vor kurzem ging man davon aus, dass die schweren Elemente von Supernovas stammen, d. h. von der Explosion einzelner Sterne.

„Die detaillierte Beobachtung einer sogenannten Makronova nach der Kollision von Neutronensternen ist ein fantastisches Ergebnis, weil sie die beobachtete Häufigkeit der schweren Elemente wesentlich besser erklärt als das Modell der Supernovas“, sagt Prof. Brügmann. Das bedeute, dass etwa das Gold auf der Erde zum größten Teil dereinst aus dem Staub einer solchen Sternenkollision entstanden ist.

Als jüngst der Nobelpreis für Physik vergeben wurde, stand der Nachweis der von Einstein vorhergesagten Gravitationswellen im Fokus. Gelungen war dieser Nachweis durch die Beobachtung der Kollision zweier Schwarzer Löcher. In der Begründung der Jury wurden neben der brillanten experimentellen Leistung u. a. Arbeiten zitiert, an denen Prof. Bernd Brügmann und der inzwischen emeritierte Prof. Dr. Gerhard Schäfer beteiligt waren. Die beiden Forscher und ihre Mitarbeiter von der Universität Jena trugen zu den theoretischen Grundlagen bei, durch die 2016 der wissenschaftliche Durchbruch gelang.

Die Entdeckungen beruhen auf möglichst exakten Vorhersagen durch Modelle

Wie Prof. Brügmann sagt, beruhen die jüngsten Entdeckungen in den Weiten von Zeit und Raum zunächst auf möglichst exakten Vorhersagen durch Modelle, die in der Theoretischen Physik u. a. in Jena erarbeitet werden. Für die Kollision von Neutronensternen entwickelt die Arbeitsgruppe von Brügmann Computerprogramme, die auf einigen der größten Supercomputer Europas laufen. An den am Anfang der Woche veröffentlichten, bahnbrechenden Ergebnissen zu Gravitationswellen ist so auch Dr. Tim Dietrich beteiligt, der in Jena promovierte und 2017 einen Promotionspreis der Deutschen Physikalischen Gesellschaft erhielt.

Dietrich forscht in Kooperation mit Jena am Albert-Einstein-Institut in Potsdam weiter zur numerischen Relativitätstheorie. Zukunftsweisend ist zudem das Promotionsthema von Reetika Dudi, Doktorandin im Graduiertenkolleg für Quanten- und Gravitationsfelder in Jena, die an der numerischen Datenanalyse für Gravitationswellen von Neutronensternen arbeitet. Davon kann so mancher Doktorand nur träumen. Noch vor kurzem war dieses Thema für die LIGO/Virgo-Kollaboration nur eines unter vielen, bis die verblüffende Entdeckung genau solch einer Quelle ihr Thema in den Mittelpunkt des Interesses rückte. Durch Dudi und Dietrich hat die Universität Jena ihren Anteil am Sternenglanz der neuesten Gravitationswellenforschung.

Kontakt:
Prof. Dr. Bernd Brügmann
Theoretisch-Physikalisches Institut der Friedrich-Schiller-Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947100
E-Mail: bernd.bruegmann[at]uni-jena.de

Ergänzter Bildtext:
Computersimulation von der Kollision zweier Neutronensterne. Oben: Gravitationswellen (in blau-grün), die während der letzten Orbits der zwei Neutronensterne mit Lichtgeschwindigkeit ausgesandt wurden. Unten: Bei der Kollision wird Materie der Neutronensterne (in gelb-orange) in den Weltraum geschleudert, während sich im Zentrum ein Schwarzes Loch mit Akkretionsscheibe bildet.
[Simulation: T. Dietrich (MPI für Gravitationsphysik) und die BAM/Jena-Kollaboration.
Visualisierung: T. Dietrich, S. Ossokine, H. Pfeiffer, A. Buonanno (MPI für Gravitationsphysik)

Weitere Informationen:

http://www.uni-jena.de

Stephan Laudien | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik
20.07.2018 | Technische Universität Berlin

nachricht Superscharfe Bilder von der neuen Adaptiven Optik des VLT
18.07.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics