Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Graphen: Wozu Buckel und Höcker gut sein können

19.04.2010
Gemeinsame Presseinformation der Leibniz Universität Hannover und der Physikalisch-Technischen Bundesanstalt

Forscher aus Hannover und Braunschweig messen, wie sich elektronische Eigenschaften von Graphen mit Hilfe von gezielt eingesetzten Rauigkeiten steuern lassen

Graphen ist zurzeit wohl das weltweit am meisten untersuchte neue Materialsystem. Wegen seiner erstaunlichen mechanischen, chemischen und elektronischen Eigenschaften verspricht es vielfältige zukünftige Anwendungen - etwa in der Mikroelektronik. Die Elektronen im Graphen sind besonders beweglich und könnten deshalb das heute verwendete Silicium als Ausgangsmaterial schneller Computerchips ersetzen.

In einer Forschungskooperation haben Wissenschaftler der Leibniz Universität Hannover und der Physikalisch-Technischen Bundesanstalt (PTB) jetzt untersucht, wie sich eine raue Unterlage auf die elektronischen Eigenschaften der Graphenschicht auswirkt. Ihre Ergebnisse lassen vermuten, dass man Plasmonen, also kollektive Schwingungen von Elektronen, im Graphen bald gezielt steuern kann, indem man ihnen aus Buckeln und Höckern quasi eine Fahrspur baut. Die Ergebnisse wurden in der aktuellen Ausgabe der Fachzeitschrift New Journal of Physics veröffentlicht.

Bereits die Struktur von Graphen ist faszinierend: Es besteht aus genau einer einzigen, geordneten Schicht von Kohlenstoffatomen. Diese unglaublich dünne Schicht sauber herzustellen ist eine große Herausforderung. Eine mögliche Methode, um großflächig Graphen auf einem isolierenden Substrat abzuscheiden, ist die Epitaxie, also das kontrollierte Wachstum von Graphen auf isolierendem Siliciumcarbid. Dafür wird ein Siliciumcarbidkristall im Vakuum erhitzt. Ab einer bestimmten Temperatur wandern Kohlenstoffatome an die Oberfläche und bilden eine einatomare Schicht auf dem noch festen Siliciumcarbid. Eine wichtige Frage für spätere Anwendungen ist dabei, wie sich Defekte und Stufen der Siliciumcarbidoberfläche auf die elektronischen Eigenschaften des darauf gewachsenen Graphens auswirken.

Innerhalb einer Forschungskooperation der PTB und der Leibniz Universität Hannover wurde nun der Einfluss von Defekten im Graphen auf die elektronischen Eigenschaften untersucht. Besonderes Augenmerk der Untersuchungen lag dabei auf dem Einfluss der Defekte auf eine spezielle elektronische Anregung, die sogenannten Plasmonen.

Durch unterschiedliche Probenpräparation wurden zunächst Siliciumcarbidkristalle mit unterschiedlicher Oberflächenrauigkeit und damit unterschiedlicher Konzentration von Oberflächendefekten präpariert, auf denen sich anschließend Graphen gebildet hat. Der Einfluss der Defekte auf die Plasmonenanregungen wurde dann mittels niederenergetischer Elektronenbeugung (SPA-LEED) und Elektronenverlustspektroskopie (EELS) untersucht.

Dabei zeigte sich eine starke Abhängigkeit der Lebensdauer des Plasmons von der Oberflächenbeschaffenheit. Defekte, wie sie an Stufenkanten und Korngrenzen entstehen, hemmen die Ausbreitung der Plasmonen stark und führen zu einer drastischen Verkürzung der Plasmonen-Lebensdauer. Dabei ist bemerkenswert, dass die sonstigen elektronischen Eigenschaften der Plasmonen, insbesondere ihre Dispersion, weitgehend unbeeinflusst bleiben.

Dies eröffnet interessante Möglichkeiten für die zukünftige technische Anwendung und Nutzung von Plasmonen (die sogenannte "Plasmonik") in Graphen. Durch gezieltes lokales Einstellen der Oberflächenrauigkeit könnten verschiedene Graphenbereiche erzeugt werden, in denen die Plasmonen entweder stark gedämpft werden oder sich praktisch ungehindert ausbreiten können. Damit könnten die Plasmonen entlang von "Plasmonenleiterbahnen" mit niedriger Oberflächenrauigkeit gezielt von einer Stelle eines Graphen-Chips zu einer anderen geleitet werden.

Die Originalveröffentlichung:
T. Langer, J. Baringhaus, H. Pfnür, H. W. Schumacher und C. Tegenkamp:
"Plasmon damping below the Landau regime: the role of defects in epitaxial graphene".
New Journal of Physics 12, 033017 (2010).
http://iopscience.iop.org/1367-2630/12/3/033017/
Ansprechpartner der PTB
Dr. Hans Werner Schumacher, PTB-Fachbereich 2.5 Halbleiter-Physik und Magnetismus,

Telefon: 0531.592 2500, E-Mail: hans.w.schumacher@ptb.de

Ansprechpartner der Leibniz Universität Hannover
Dr. Christoph Tegenkamp, Institut für Festkörperphysik,
Telefon: 0511.762 2542, E-Mail: tegenkamp@fkp.uni-hannover.de

Jessica Lumme | idw
Weitere Informationen:
http://www.uni-hannover.de
http://iopscience.iop.org/1367-2630/12/3/033017/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultraschneller Blick in die Photochemie der Atmosphäre
11.10.2019 | Max-Planck-Institut für Quantenoptik

nachricht Wie entstehen die stärksten Magnete des Universums?
10.10.2019 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics