Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Graphen-Forschung: Lichtwellen im Kohlenstoff-Netz fangen

21.06.2012
Graphen ist das wohl dünnste Netz der Welt - und zeichnet sich doch durch seine Festigkeit aus. Eine neue Studie zeigt, dass dieses zweidimensionale Gitter aus Kohlenstoff-Atomen sogar Licht gefangen nehmen kann.

Dünn, dünner, Graphen: Bei diesem Material ordnen sich Kohlenstoff-Atome zu sechseckigen Maschen in einem nur zweidimensionalen Gitter an. Das wohl dünnste Netz der Welt ist aber sehr stabil und kann sogar Strom leiten. Andre Geim und Konstantin Novoselov erhielten für diese Entdeckung den Nobelpreis für Physik im Jahr 2010.Graphen könnte das Silizium als Basis für außerordentlich kleine und schnelle Transistoren ablösen und wird deshalb intensiv erforscht.

Stromleitend ist Graphen, weil Elektronen in seinem Netz gefangen sind und sich dabei mit großer Freiheit bewegen. Ein internationales Team um den US-amerikanischen Forscher Dimitri Basov hat nun aber gezeigt, dass sich überraschenderweise auch Photonen vom Graphennetz einfangen lassen und auf ihm bewegen. „Die Lichtwellen können dort sogar gesteuert werden“, sagt der Physiker Dr. Fritz Keilmann, der der LMU, dem Center for Nanoscience (CeNS) sowie dem Max Planck Institut für Quantenoptik (MPQ) angehört, und maßgeblich zu dieser Arbeit beigetragen hat.

Computer auch per Licht schalten

Die Steuerung erfolgt direkt über elektrische Felder und Stöme. Demnach könnte künftig in Graphen das Licht durch Strom und möglicherweise auch Strom durch Licht manipuliert werden, und dies auf nanoskopisch kleinen Leitungsbahnen von Millionstel Millimetern und mit extrem kurzen Schaltzeiten von weniger als einer Pikosekunde - also 0,000000000001 Sekunden. „Möglicherweise lassen sich auf dieser Grundlage Computer entwickeln, bei denen Graphen-Transistoren mit Strom wie mit Licht geschaltet werden können“, sagt Keilmann.

Schon länger hatten Berechnungen vermuten lassen, dass Photonen entlang von Graphen geleitet werden können. Es sollte sich dabei um Photonen des langwelligen Infrarotlichts handeln, die dabei aber enorm gebremst laufen würden. Dies wäre ihrer Elektronenlast zu verdanken: Photonen und Elektronen sollten zusammen eine Art Mischteilchen bilden. Diese Plasmonen konnten bislang aber nicht untersucht werden, weil der Impuls der anregenden Photonen viel zu niedrig war.

Photonen auf die Spitze getrieben

Den Durchbruch brachte eine nanometrisch feine Metallspitze, an deren Spitze sich das Infrarotlicht - ähnlich wie bei einem Blitzableiter - konzentriert. Die Infrarot-Photonen bekommen so einen Impuls, der bis zu 60-mal erhöht ist. Sie können sich mit diesem "Schub" problemlos in Plasmonen umwandeln und von der Metallspitze weg auf dem Graphen „loslaufen“. Die hierfür nötige Apparatur stand bereits in Form eines kommerziellen „Infrarot-Nahfeldmikroskops“ zur Verfügung, dessen feine Abtastspitze normalerweise benutzt wird, um Rasterbilder der chemischen Zusammensetzung aufzunehmen.

In diesem Fall wurde nur ein einziges Rasterbild vom Rand der Graphenprobe aufgenommen. Die Reflektion der Plasmonen an diesem Rand erzeugte ein Interferenzmuster, das die Existenz dieser Mischteilchen ableiten und sogar ihre interessanten Eigenschaften ablesen ließ. Dazu gehören unter anderem die Stärke der Reflektion am Graphenrand sowie eine für Anwendungen besonders wichtige elektrische Geschwindigkeitsänderung. „Die lang gesuchte elektrische Kontrolle von Licht ist damit Realität geworden“, sagt Keilmann.

Eine Arbeitsgruppe in Spanien ist unabhängig zum gleichen Ergebnis gekommen, und zwar für einen aus der Gasphase abgeschiedenen statt dem hier von Graphit abgezogenen Graphenfilm. Ihr Bericht wird in der gleichen Ausgabe des Fachmagazins Nature publiziert werden und so die Befunde sowie deren Bedeutung für die Nanoelektronik bestärken. (Nature, 20. Juni 2012) (suwe)

Publikation:
„Gate-tuning of graphene plasmons revealed by infrared nano-imaging”
Z. Fei, A. S. Rodin, G. O. Andreev,W. Bao, A. S.McLeod, M.Wagner, L.M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann & D. N. Basov
Nature, 20. Juni 2012
doi:10.1038/nature11253

Ansprechpartner:
Dr. Fritz Keilmann
Tel.: 089 / 2891 4088 (4106 lab)
Fax: 09113 0844 88883
E-Mail: keilmann@lasnix.com

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/
http://www.munich-photonics.de/1/menschen/members/member/?personid=56&cHash=249693cdb7

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rasende Elektronen unter Kontrolle
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kometen als Wasserträger für Exoplaneten
15.11.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics