Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gitter aus magnetischen Wirbeln

01.08.2011
Forscher finden magnetische Skyrmionen in atomar dünnem Metallfilm

Physiker der Universitäten in Hamburg und Kiel und des Forschungszentrums Jülich haben erstmals ein regelmäßiges Gitter aus magnetischen Skyrmionen – wirbelförmigen Spinstrukturen von außergewöhnlicher Stabilität – auf einer Oberfläche gefunden.


Die winzigen Wirbel aus nur je etwa 15 Atomen bilden ein regelmäßiges nahezu quadratisches Gitter. Die Grafik zeigt im rechten Bereich die magnetische Messung mithilfe spinpolarisierter Rastertunnelmikroskopie als Graustufenbild. Das herausgeschnittene Quadrat markiert ein einzelnes Skyrmion. Die farbigen Kegel zeigen die Orientierung der magnetischen Ausrichtung der einzelnen hexagonal angeordneten Eisenatome des Metallfilms an. M. Menzel, Universität Hamburg

Diese faszinierende magnetische Struktur wurde an der Universität Hamburg mithilfe der spinpolarisierten Rastertunnelmikroskopie experimentell entdeckt und auf der atomaren Skala sichtbar gemacht. Theoretiker der Christian-Albrechts-Universität zu Kiel und des Forschungszentrums Jülich konnten diesen magnetischen Zustand und seine mikroskopische Ursache mit Hilfe von quantenmechanischen Rechnungen auf Supercomputern erklären.

Wie die Fachzeitschrift „Nature Physics“ in der Online-Ausgabe vom 31. Juli 2011 berichtet, entdeckten die Forscher die magnetischen Wirbel, die jeweils aus ungefähr 15 Atomen bestehen, in einer atomaren Schicht Eisen auf der Oberfläche eines Iridiumkristalls. Diese Entdeckung könnte neue Impulse für den Bereich der Spintronik geben.

Vor ungefähr 50 Jahren fand der theoretische Physiker Tony Skyrme zu seiner Überraschung in quantenmechanischen Feldtheorien stabile und lokalisierte Konfigurationen, die miteinander wechselwirken und sich wie Atome auf einem Gitter anordnen können. Aufgrund dieser Eigenschaften identifizierte er diese wirbelartigen Lösungen als elementare Teilchen. Diese nach ihrem Entdecker benannten Skyrmionen zeigten sich später in vielen unterschiedlichen Gebieten der Physik und entwickelten sich so zu einem wichtigen Konzept. Das mögliche Auftreten von Skyrmionen in magnetischen Materialien wurde bereits vor 20 Jahren vorhergesagt und in Volumenmaterialien auch schon experimentell bestätigt.

Das in Hamburg entdeckte magnetische Skyrmionengitter tritt in einem atomar dünnen Film auf einer Oberfläche auf. Der Durchmesser der Wirbel beträgt nur wenige Atome und ist damit um mindestens eine Größenordnung kleiner als die bisher bekannten magnetischen Skyrmionen. Wie so oft spielte auch bei dieser Entdeckung der Zufall eine große Rolle. „Es ist zwar bekannt, dass Eisen unter Umständen auch ungewöhnliche magnetische Strukturen bilden kann, aber als wir die nahezu quadratische magnetische Struktur im Nanometer-Bereich gefunden haben, die sich eigentlich nicht mit der hexagonalen Anordnung der Eisenatome verträgt, war die Überraschung groß“ sagt Dr. Kirsten von Bergmann aus der experimentellen Hamburger Forschungsgruppe von Prof. Roland Wiesendanger. Den Doktoranden Matthias Menzel fasziniert die Tatsache, „dass man durch geschicktes Variieren der Versuchsanordnung die Messergebnisse zu der komplizierten magnetischen Struktur zusammensetzen kann“.

Um diese neuartige Spinstruktur und den außergewöhnlichen Symmetriebruch zwischen magnetischer und atomarer Ordnung zu verstehen, mussten die Theoretiker der Universität Kiel und des Forschungszentrums Jülich ein Modell für die Spinanordnung entwickeln und aufwendige quantenmechanische Rechnungen auf Supercomputern in Jülich durchführen. Diese brachten aber schließlich die Gewissheit, dass es sich tatsächlich um stabile magnetische Skyrmionen auf einer Metalloberfläche handelt. Prof. Stefan Heinze, Leiter der Kieler Arbeitsgruppe: „Mit Hilfe unseres Modells konnten wir die genaue Spinstruktur im Eisenfilm angeben und als Skyrmionengitter identifizieren. Der Vergleich mit den experimentellen Daten erbrachte schließlich den Beweis für unsere Entdeckung.“

Die Ursache für das Auftreten dieser komplexen Struktur ist ein Zusammenspiel verschiedener magnetischer Wechselwirkungen: Während die Rotation von atomaren Spins mit einem bestimmten Drehsinn durch die antisymmetrische Dzyaloshinskii-Moriya-Wechselwirkung verursacht wird, kann erst die sogenannte 4-Spin-Wechselwirkung unter Beteiligung von vier magnetischen Atomen die hier gefundenen Skyrmionen erzeugen.

Für zukünftige Anwendungen zum Beispiel im Bereich der Spintronik eröffnen die gefundenen magnetischen Skyrmionen völlig neue Möglichkeiten, werfen gleichzeitig aber auch neue Fragen auf: Wie wirkt elektrischer Strom auf die Skyrmionen und lassen sich die magnetischen Wirbel vielleicht sogar gezielt bewegen?

Originalveröffentlichung:
Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions,
Stefan Heinze, Kirsten von Bergmann, Matthias Menzel, Jens Brede, André Kubetzka, Roland Wiesendanger, Gustav Bihlmayer, Stefan Blügel,
Nature Physics, Online-Veröffentlichung vom 31.07.2011,
DOI: 10.1038/NPHYS2045
Weitere Informationen:
Sonderforschungsbereich 668
LEXI-Cluster NANO-SPINTRONICS
ERC Advanced Grant FURORE
Universität Hamburg
Dipl.-Chem. Heiko Fuchs
Tel.: (0 40) 4 28 38 - 69 59
E-Mail: hfuchs@physnet.uni-hamburg.de
Christian-Albrechts-Universität zu Kiel
Stabsstelle Presse und Kommunikation
Tel.: (0431) 880 - 2104
E-Mail: presse@uv.uni-kiel.de
Weitere Informationen:
http://www.sfb668.de
http://www.nanoscience.de/lexi
http://www.nanoscience.de/furore
http://www.itap.uni-kiel.de/theo-physik/heinze

Heiko Fuchs | idw
Weitere Informationen:
http://www.sfb668.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Extrem klein und schnell: Laser zündet heißes Plasma
18.09.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Schaltung des Stromflusses auf atomarer Skala
17.09.2018 | Universität Augsburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Im Focus: Bio-Kunststoffe nach Maß

Zusammenarbeit zwischen Chemikern aus Konstanz und Pennsylvania (USA) – gefördert im Programm „Internationale Spitzenforschung“ der Baden-Württemberg-Stiftung

Chemie kann manchmal eine Frage der richtigen Größe sein. Ein Beispiel hierfür sind Bio-Kunststoffe und die pflanzlichen Fettsäuren, aus denen sie hergestellt...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: Mit Nano-Lenkraketen Keime töten

Wo Antibiotika versagen, könnten künftig Nano-Lenkraketen helfen, multiresistente Erreger (MRE) zu bekämpfen: Dieser Idee gehen derzeit Wissenschaftler der Universität Duisburg-Essen (UDE) und der Medizinischen Hochschule Hannover nach. Zusammen mit einem führenden US-Experten tüfteln sie an millionstel Millimeter kleinen Lenkraketen, die antimikrobielles Silber zielsicher transportieren, um MRE vor Ort zur Strecke zu bringen.

In deutschen Krankenhäusern führen die MRE jährlich zu tausenden, teils lebensgefährlichen Komplikationen. Denn wer sich zum Beispiel nach einer Implantation...

Im Focus: Schaltung des Stromflusses auf atomarer Skala

Forscher aus Augsburg, Trondheim und Zürich weisen gleichrichtende Eigenschaften von Grenzflächenkontakten im ferroelektrischen Halbleiter nach.

Die Grenzflächen zwischen zwei elektrisch unterschiedlich polarisierten Bereichen im Festkörper werden als ferroelektrische Domänenwände bezeichnet. In der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungen

Unbemannte Flugsysteme für die Klimaforschung

18.09.2018 | Veranstaltungen

Studierende organisieren internationalen Wettbewerb für zukünftige Flugzeuge

17.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Latest News

World's first passive anti-frosting surface fights ice with ice

18.09.2018 | Materials Sciences

A novel approach of improving battery performance

18.09.2018 | Materials Sciences

Scientists use artificial neural networks to predict new stable materials

18.09.2018 | Information Technology

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics