Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gitter aus Nanofallen und Verringerung der Linienbreite in einem Raman-aktiven Gas

08.02.2017

Die Verringerung der Emissionslinienbreite eines Moleküls ist eines der Hauptziele der Präzisionsspektroskopie. Eine Möglichkeit ist die Lokalisierung der Moleküle auf der Subwellenlängenskala. Ein neuartiger Ansatz in dieser Richtung wurde kürzlich von einem Team des Max-Born-Instituts und des Xlim Instituts in Limoges vorgeschlagen. Dieser Ansatz verwendet zur Lokalisierung eine stehende Welle in einer gasgefüllten Hohlfaser. Sie erzeugt für Raman-aktive Moleküle ein Gitter aus tiefen Fallen auf Nanometer-Skala, was zu einer Verringerung der Linienbreite um den Faktor 10 000 führt.

Die Strahlung, die von Atomen und Molekülen emittiert wird, wird üblicherweise durch die Bewegung der Emitter spektral verbreitert, ein Effekt, der Dopplerverbreitung genannt wird. Die Überwindung dieses Effekts ist eine schwierige Aufgabe, insbesondere für Moleküle. Eine Möglichkeit, die molekulare Bewegung zu reduzieren, besteht darin, tiefe Potentialfallen mit kleinen Dimensionen zu erzeugen. Bisher wurde dies - allerdings mit begrenztem Erfolg - dadurch erreicht, dass z.B. mehrere gegenläufige Strahlen in einem komplizierten Aufbau angeordnet wurden.


Das Pumplicht wandelt sich auf der makroskopischen Skala in nach vorne gerichtete Stokes-Strahlung um, die teilweise vom Faserende reflektiert wird.

Bild: MBI

Die Forscher der Kooperation zwischen Max-Born-Institut und Xlim-Institut zeigen, dass die Subwellenlängen-Lokalisierung und die Verringerung der Linienbreite in einer sehr einfachen Anordnung durch Selbstorganisation von Raman-aktivem Gas (molekularem Wasserstoff) in einer kristallinen, photonischen Hohlfaser möglich sind. Raman-Streuung wandelt das Pumplicht in sogenannte Stokes-Seitenbänder um.

Durch Reflexionen an den Faserenden laufen diese Seitenbänder in der Faser hin und her und bilden ein stationäres Interferenzmuster: eine stehende Welle mit alternierenden Bereichen von hohem und niedrigem Lichtfeld [Abb. 1]. In den Hochfeldregionen ist der Raman-Übergang gesättigt und nicht aktiv. Die Moleküle haben eine hohe potentielle Energie, da sie teilweise im angeregten Zustand sind. In der Niedrigfeldregion sind die Moleküle Raman-aktiv.

Sie haben eine niedrige Potentialenergie, da sie nahe am Grundzustand sind. Diese Niedrigfeldregionen bilden ein Gitter von etwa 40 000 schmalen, starken Fallen, die lokalisierte Raman-aktive Moleküle enthalten. Die Größe dieser Fallen beträgt etwa 100 nm (1 nm = 10⁻⁹ m), was viel kleiner ist als die Lichtwellenlänge von 1130 nm. Daher haben die emittierten Stokes-Seitenbänder eine sehr schmale Spektralbreite von nur 15 kHz - 10 000 mal schmaler als die doppelverbreiterten Seitenbänder unter den gleichen Bedingungen!

Die Selbstorganisation des Gases manifestiert sich auch auf der makroskopischen Skala. Zunächst zeigen die Berechnungen, dass der Raman-Prozess hauptsächlich genau in dem Faserabschnitt stattfindet, in dem die stehende Welle gebildet wird, wie im oberen Teil von Abb. 1 gezeigt ist. Weiterhin führt der makroskopische Gradient des Potentials zur Strömung des Gases zu den Faserenden, was mit bloßem Auge im Experiment beobachtet werden kann.

Diese starke Lokalisierung und die Verengung der Linienbreite können zu verschiedenen Anwendungen z.B. in der Spektroskopie führen. Es kann aber auch als ein Verfahren zur periodischen Modulation der Gasdichte verwendet werden, was für die Entwicklung von quasi-phasenangepassten Anordnungen für weitere nichtlineare Prozesse geeignet ist wie z.B. zur effektiven Erzeugung von hohen Harmonischen.

Abb. 1: Das Pumplicht wandelt sich auf der makroskopischen Skala in nach vorne gerichtete Stokes-Strahlung (FS) um, die teilweise vom Faserende reflektiert wird und zu rückwärts gerichteter Stokes-Strahlung (BS) wird. Letztere wird ebenfalls durch das Pumplicht verstärkt. In dem Gebiet, in dem sowohl FS als auch BS stark sind, bilden sie ein Interferenzmuster der stehenden Welle, das auf der mikroskopischen Skala dargestellt ist. In den Niedrigfeldbereichen (durch rotgefärbte Moleküle gekennzeichnet) befinden sich die Moleküle im Grundzustand und sind stark lokalisiert, wie das Potential im unteren Teil zeigt. Genau diese "gefangenen" Moleküle sind Raman-aktiv, was zur Verringerung der Linienbreite führt.

Originalpublikation: Nature Communications 7, 12779 (2016) doi:10.1038/ncomms12779
"Raman gas self-organizing into deep nano-trap lattice"
M. Alharbi, A. Husakou, M. Chafer, B. Debord, F. Gérôme und F. Benabid

Kontakt:
Max-Born-Institut im Forschungsverbund Berlin e.V.
Max-Born-Straße 2A
12489 Berlin
Dr. Anton Husakou
Tel. 030 6392 1280
gusakov@mbi-berlin.de

Weitere Informationen:

http://www.mbi-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Berichte zu: Gitter Interferenzmuster Linienbreite Moleküle Strahlen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klassisches Doppelspalt-Experiment in neuem Licht
21.01.2019 | Universität zu Köln

nachricht Neue Erkenntnisse über magnetische Quanteneffekte in Festkörpern
21.01.2019 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Zweigesichtige Stammzellen produzieren Holz und Bast

Heidelberger Forscher untersuchen einen der wichtigsten Wachstumsprozesse auf der Erde

Für einen der wichtigsten Wachstumsprozesse auf der Erde – die Holzbildung – sind sogenannte zweigesichtige Stammzellen verantwortlich: Sie bilden nicht nur...

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Klassisches Doppelspalt-Experiment in neuem Licht

Internationale Forschergruppe entwickelt neue Röntgenspektroskopie-Methode basierend auf dem klassischen Doppelspalt-Experiment, um neue Erkenntnisse über die physikalischen Eigenschaften von Festkörpern zu gewinnen.

Einem internationalen Forscherteam unter Führung von Physikern des Sonderforschungsbereichs 1238 der Universität zu Köln ist es gelungen, eine neue Variante...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Führende Röntgen- und Nanoforscher treffen sich in Hamburg

22.01.2019 | Veranstaltungen

Smarte Sensorik für Mobilität und Produktion 4.0 am 07. Februar 2019 in Oldenburg

18.01.2019 | Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zweigesichtige Stammzellen produzieren Holz und Bast

22.01.2019 | Biowissenschaften Chemie

Wie tickt die rote Königin?

22.01.2019 | Biowissenschaften Chemie

Digitaler Denker: Argument-Suchmaschine hilft bei der Meinungsbildung

22.01.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics